True or False?

True or false :

6 n 11 + 33 n 10 + 55 n 9 66 n 7 + 66 n 5 33 n 3 + 5 n 6n^{11}+33n^{10}+55n^9-66n^7+66n^5-33n^3+5n is always divisible by 66, for all positive integer n n .

True False

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Let us reduce the expression. 66 n 7 + 66 n 5 -66n^7+66n^5 is divisible by 66. 33 n 10 33 n 3 = 33 n 3 ( n 7 1 ) 33n^{10}-33n^3=33n^3(n^7-1) if n is even, n 3 n^3 is even and if n is odd, n 7 1 n^7-1 is even so either way 33 n 10 33 n 3 33n^{10}-33n^3 is divisble by 66.

So we only require to check if 6 n 11 + 55 n 9 + 5 n 6n^{11}+55n^9+5n is divisible by 66. If n is even the expression is even and if n is odd, 55 n 9 + 5 n 55n^9+5n are both odd so their sum is even so the expression is divisible by 2 for all n.

6 n 11 6n^{11} is divisible by 3. 55 1 ( m o d 3 ) , 5 2 ( m o d 3 ) 55 \equiv 1 \pmod3, 5 \equiv 2 \pmod3 . So 55 n 9 + 5 n n 9 + 2 n n ( n 8 + 2 ) ( m o d 3 ) 55n^9+5n \equiv n^9+2n \equiv n(n^8+2) \pmod3 . If n is divisible by 3, 55 n 9 + 5 n 55n^9+5n is divisible by 3. If n 1 ( m o d 3 ) n \equiv 1 \pmod3 , 55 n 9 + 5 n n ( n 8 + 2 ) 1 × 3 0 ( m o d 3 ) 55n^9+5n \equiv n(n^8+2) \equiv 1 \times 3 \equiv 0 \pmod3 as any number which is 1 ( m o d 3 ) 1 \pmod3 raised to any power is also 1 ( m o d 3 ) \equiv 1 \pmod 3 .

If n 2 ( m o d 3 ) n \equiv 2 \pmod3 , 55 n 9 + 5 n n ( n 8 + 2 ) 2 × 3 0 ( m o d 3 ) 55n^9+5n \equiv n(n^8+2) \equiv 2 \times 3 \equiv 0 \pmod3 as 8 is even and any number which is 2 ( m o d 3 ) \equiv 2 \pmod3 raised to the power of an even number is 1 ( m o d 3 ) \equiv 1 \pmod3 .

So, 55 n 9 + 5 n 55n^9+5n is always divisible by 3, so 6 n 11 + 55 n 9 + 5 n 6n^{11}+55n^9+5n is always divisible by 6.

So, it suffices to check whether 6 n 11 + 55 n 9 + 5 n 6n^{11}+55n^9+5n is divisible by 11.

55 n 9 55n^9 is divisible by 11. So it suffices to check whether 6 n 11 + 5 n = n ( 6 n 10 + 5 ) 6n^{11}+5n=n(6n^{10}+5) is divisible by 11.

Now we have lots of case work to do.

  • If n 0 ( m o d 11 ) n \equiv 0 \pmod{11} , the expression is divisible by 11.

  • If n 1 ( m o d 11 ) n \equiv 1 \pmod{11} , n ( 6 n 10 + 5 ) 1 ( 6 + 5 ) 0 ( m o d 11 ) n(6n^{10}+5) \equiv 1(6+5) \equiv 0 \pmod{11} .

  • If n 2 ( m o d 11 ) n \equiv 2 \pmod{11} , n ( 6 n 10 + 5 ) 2 ( 6 × 2 10 + 5 ) n(6n^{10}+5) \equiv 2(6 \times 2^{10}+5) . As 2 5 1 ( m o d 11 ) 2^{5} \equiv -1 \pmod{11} , 2 10 1 ( m o d 11 ) 2^{10} \equiv 1 \pmod{11} . So, 2 ( 6 × 2 10 + 5 ) 2 ( 6 + 5 ) 0 ( m o d 11 ) 2(6 \times 2^{10}+5) \equiv 2(6+5) \equiv 0 \pmod{11} .

  • If n 3 ( m o d 11 ) n \equiv 3 \pmod{11} , n ( 6 n 10 + 5 ) 3 ( 6 × 3 10 + 5 ) n(6n^{10}+5) \equiv 3(6 \times 3^{10}+5) . As 3 5 1 ( m o d 11 ) 3^{5} \equiv 1 \pmod{11} , 3 10 1 ( m o d 11 ) 3^{10} \equiv 1 \pmod{11} . So, 3 ( 6 × 3 10 + 5 ) 3 ( 6 + 5 ) 0 ( m o d 11 ) 3(6 \times 3^{10}+5) \equiv 3(6+5) \equiv 0 \pmod{11}

  • If n 4 ( m o d 11 ) n \equiv 4 \pmod{11} , n ( 6 n 10 + 5 ) 4 ( 6 × 4 10 + 5 ) n(6n^{10}+5) \equiv 4(6 \times 4^{10}+5) . 4 10 2 20 1 ( m o d 11 ) 4^{10} \equiv 2^{20} \equiv 1 \pmod{11} (from case 3). So, 4 ( 6 × 3 10 + 5 ) 4 ( 6 + 5 ) 0 ( m o d 11 ) 4(6 \times 3^{10}+5) \equiv 4(6+5) \equiv 0 \pmod{11}

  • If n 5 ( m o d 11 ) n \equiv 5 \pmod{11} , n ( 6 n 10 + 5 ) 5 ( 6 × 5 10 + 5 ) n(6n^{10}+5) \equiv 5(6 \times 5^{10}+5) . As 5 2 3 ( m o d 11 ) 5^{2} \equiv 3 \pmod{11} , 5 10 3 5 1 ( m o d 11 ) 5^{10} \equiv 3^5 \equiv 1 \pmod{11} (from case 4). So, 5 ( 6 × 5 10 + 5 ) 5 ( 6 + 5 ) 0 ( m o d 11 ) 5(6 \times 5^{10}+5) \equiv 5(6+5) \equiv 0 \pmod{11}

  • If n 6 ( m o d 11 ) n \equiv 6 \pmod{11} , n ( 6 n 10 + 5 ) 6 ( 6 × 6 10 + 5 ) n(6n^{10}+5) \equiv 6(6 \times 6^{10}+5) . 6 10 2 10 × 3 10 1 ( m o d 11 ) 6^{10} \equiv 2^{10} \times 3^{10} \equiv 1 \pmod{11} (from case 3 and 4). So, 6 ( 6 × 6 10 + 5 ) 6 ( 6 + 5 ) 0 ( m o d 11 ) 6(6 \times 6^{10}+5) \equiv 6(6+5) \equiv 0 \pmod{11}

  • If n 7 ( m o d 11 ) n \equiv 7 \pmod{11} , n ( 6 n 10 + 5 ) 7 ( 6 × 7 10 + 5 ) n(6n^{10}+5) \equiv 7(6 \times 7^{10}+5) . As 7 3 2 ( m o d 11 ) 7^3 \equiv 2 \pmod{11} . 7 10 2 3 × 7 56 1 ( m o d 11 ) 7^{10} \equiv 2^3 \times 7 \equiv 56 \equiv 1 \pmod{11} . So, 7 ( 6 × 6 10 + 5 ) 7 ( 6 + 5 ) 0 ( m o d 11 ) 7(6 \times 6^{10}+5) \equiv 7(6+5) \equiv 0 \pmod{11}

  • If n 8 ( m o d 11 ) n \equiv 8 \pmod{11} , n ( 6 n 10 + 5 ) 8 ( 6 × 8 10 + 5 ) n(6n^{10}+5) \equiv 8(6 \times 8^{10}+5) . 8 10 2 30 1 ( m o d 11 ) 8^{10} \equiv 2^{30} \equiv 1 \pmod{11} (from case 3). So, 8 ( 6 × 8 10 + 5 ) 8 ( 6 + 5 ) 0 ( m o d 11 ) 8(6 \times 8^{10}+5) \equiv 8(6+5) \equiv 0 \pmod{11}

  • If n 9 ( m o d 11 ) n \equiv 9 \pmod{11} , n ( 6 n 10 + 5 ) 9 ( 6 × 9 10 + 5 ) n(6n^{10}+5) \equiv 9(6 \times 9^{10}+5) . 9 10 3 20 1 ( m o d 11 ) 9^{10} \equiv 3^{20} \equiv 1 \pmod{11} (from case 4). So, 9 ( 6 × 9 10 + 5 ) 9 ( 6 + 5 ) 0 ( m o d 11 ) 9(6 \times 9^{10}+5) \equiv 9(6+5) \equiv 0 \pmod{11}

  • If If n 10 1 ( m o d 11 ) n \equiv 10 \equiv -1 \pmod{11} , n ( 6 n 10 + 5 ) 10 ( 6 × 1 0 10 + 5 ) n(6n^{10}+5) \equiv 10(6 \times 10^{10}+5) 1 0 10 1 10 1 ( m o d 10 ) 10^{10} \equiv -1^{10} \equiv 1 \pmod{10} . So, 10 ( 6 × 1 0 10 + 5 ) 10 ( 6 + 5 ) 0 ( m o d 11 ) 10(6 \times 10^{10}+5) \equiv 10(6+5) \equiv 0 \pmod{11}

Thus we conclude that n ( 6 n 10 + 5 ) n(6n^{10}+5) is divisible by 11 for all n.

Thus, 6 n 11 + 33 n 10 + 55 n 9 66 n 7 + 66 n 5 33 n 3 + 5 n 6n^{11}+33n^{10}+55n^9-66n^7+66n^5-33n^3+5n is divisible by 66 for all n.

Phew!!!

Let me give you hint sum of first N consecutive integers at the power of 10

Department 8 - 5 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...