True or False

Algebra Level 3

True or False?

k = 1 n k ! = k = 1 n k n + 1 k \large \displaystyle \prod_{k=1}^{n} k!=\displaystyle \prod_{k=1}^{n} k^{n+1-k}

False True

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

k = 1 n k ! = 1 ! 2 ! 3 ! n ! = 1 ( 1 2 ) ( 1 2 3 ) ( 1 2 3 4 n ) \displaystyle \prod_{k=1}^{n} k!=1!\cdot 2!\cdot 3!\cdots n!=1\cdot (1 \cdot 2)\cdot (1\cdot 2\cdot 3)\cdots (1\cdot 2 \cdot 3\cdot 4 \cdots n) = 1 n 2 n 1 3 n 2 ( n 1 ) 2 n 1 = k = 1 n k n + 1 k =1^{n}\cdot 2^{n-1} \cdot 3^{n-2} \cdots (n-1)^{2} \cdot n^{1} =\displaystyle \prod_{k=1}^{n} k^{n+1-k}

Sabhrant Sachan
Jan 5, 2017

1 ! 2 ! 3 ! ( n 1 ) ! n ! = 1! \cdot 2! \cdot 3! \cdots (n-1)! \cdot n! = ( n ( n 1 ) ( n 2 ) 3 2 1 ( n 1 ) ( n 2 ) 3 2 1 ( n 2 ) 3 2 1 3 2 1 2 1 1 ) n rows = 1 n 2 n 1 3 n 2 ( n 1 ) 2 n 1 \left( \begin{matrix} \begin{aligned} n \cdot (n-1) \cdot (n-2) \cdots 3 \cdot 2 & \cdot 1 \\ (n-1) \cdot (n-2) \cdots 3 \cdot 2 & \cdot 1 \\ (n-2) \cdots 3 \cdot 2 & \cdot 1 \\ & \vdots \\ 3 \cdot 2 & \cdot 1 \\ 2 & \cdot 1 \\ & 1 \end{aligned} \end{matrix} \right) \hspace{1mm} \small n \text{ rows} \\ = 1^{n}\cdot 2^{n-1}\cdot 3^{n-2} \cdots (n-1)^{2} \cdot n^{1}

Nice solution, Sambhrant

Hjalmar Orellana Soto - 4 years, 5 months ago

Log in to reply

Thank you :) , your solution is also good but i think vertical expansion of the product is easy to understand.

Sabhrant Sachan - 4 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...