True or False ? - Base 2

1 2 = 0.111111111111.. . 2 1_2 = 0.111111111111..._2

True False

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Jordan Cahn
Mar 4, 2019

In general, in base b b , let k = b 1 k=b-1 . Then 0. k b = i = 1 k b i = i = 0 b 1 b i = ( b 1 ) i = 1 1 b i = ( b 1 ) 1 / b 1 1 / b = b ( b 1 ) b ( b 1 ) = 1 \begin{aligned} 0.\overline{k}_b &= \sum_{i=1}^\infty \frac{k}{b^i} \\ &= \sum_{i=0}^\infty \frac{b-1}{b^i} \\ &=(b-1)\sum_{i=1}^\infty \frac{1}{b^i} \\ &= (b-1)\frac{^1\!/\!_b}{1-{}^1\!/\!_b} \\ &= \frac{b(b-1)}{b(b-1)} \\ &= \boxed{1} \end{aligned}

Abd Fml<3
Mar 3, 2019

We know that : 1 = 1 2 + 1 4 + 1 8 + 1 16 + . . . 1 = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} +... (base 10)

Or, 1 2 + 1 4 + 1 8 + 1 16 + . . . = 1 × 2 1 + 1 × 2 2 + 1 × 2 3 + 1 × 2 4 + . . . \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} +...= 1 \times 2^{-1} + 1 \times 2^{-2} + 1 \times 2^{-3} + 1 \times 2^{-4} +... (base 10)

And ( 1 × 2 1 + 1 × 2 2 + 1 × 2 3 + 1 × 2 4 + . . . ) 10 = ( 0.1 + 0.01 + 0.001 + 0.0001 + . . . ) 2 (1 \times 2^{-1} + 1 \times 2^{-2} + 1 \times 2^{-3} + 1 \times 2^{-4} +...)_{10} = (0.1 +0.01 +0.001 +0.0001 +...)_2

Thus, 1 2 = 0.111111111111.. . 2 \boxed{1_2 = 0.111111111111..._2}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...