True or False? Is it a Multiple?

Is 2 2 n 1 + 1 2^{2n-1}+1 a multiple of 3 for all natural number n n ?

True Cannot tell for all cases False

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

William Allen
Jan 12, 2019

2 1 ( m o d 3 ) 2\equiv -1 \pmod{3}

2 k 1 k ( m o d 3 ) so for odd values of k, 2 k 1 ( m o d 3 ) \Rightarrow 2^{k}\equiv -1^{k} \pmod{3} \text{ so for odd values of k, } 2^{k}\equiv -1 \pmod{3}

since 2 n 1 is always odd, 2 2 n 1 1 ( m o d 3 ) \Rightarrow \text{ since } 2n-1 \text{ is always odd, } 2^{2n-1} \equiv -1 \pmod{3} n N \forall n \in \mathbb N

3 2 2 n 1 + 1 \Rightarrow 3|2^{2n-1}+1 n N \forall n \in \mathbb N

Tom Engelsman
Jan 12, 2019

Let's try an induction approach here!

CASE I ( n = 1 n=1 ): 2 2 ( 1 ) 1 + 1 = 2 + 1 = 3 2^{2(1) - 1} + 1 = 2 + 1 = 3 \Rightarrow TRUE.

CASE II ( n = k n = k ): 2 2 k 1 + 1 = 3 α ( α N ) 2^{2k-1} + 1 = 3\alpha (\alpha \in \mathbb{N}) \Rightarrow assume to be TRUE.

CASE III ( n = k + 1 n = k+1 ): By multiplying both sides of CASE II by 2 2 2^2 yields:

2 2 ( 2 2 k 1 + 1 ) = 2 2 3 α 2^2 \cdot (2^{2k-1} + 1) = 2^2 \cdot 3\alpha ;

or 2 2 k + 1 + 4 = 4 3 α 2^{2k+1} + 4 = 4 \cdot 3\alpha ;

or 2 2 ( k + 1 ) 1 + 1 + 3 = 4 3 α ; 2^{2(k+1) -1} + 1 + 3 = 4 \cdot 3\alpha;

or 2 2 ( k + 1 ) 1 + 1 = 3 ( 4 α 1 ) 2^{2(k+1) -1} + 1 = 3 \cdot (4\alpha -1) \Rightarrow TRUE.

Chew-Seong Cheong
Jan 13, 2019

Let us consider the following:

2 2 n 1 + 1 2 ( 2 n 1 ) m o d ϕ ( 3 ) + 1 (mod 3) Since gcd ( 2 , 3 ) = 1 , Euler’s theorem applies. 2 ( 2 n 1 ) m o d 2 + 1 (mod 3) Euler’s totient function ϕ ( 3 ) = 3 1 = 2 since 3 is a prime. 2 1 + 1 3 0 (mod 3) \begin{aligned} 2^{2n-1}+ 1 & \equiv 2^{\color{#3D99F6}(2n-1)\ \bmod\ \phi (3)}+ 1 \text{ (mod 3)} & \small \color{#3D99F6} \text{Since }\gcd(2,3) = 1 \text{, Euler's theorem applies.} \\ & \equiv 2^{\color{#3D99F6}(2n-1)\ \bmod\ 2}+ 1 \text{ (mod 3)} & \small \color{#3D99F6} \text{Euler's totient function }\phi (3) = 3-1 = 2 \text{ since 3 is a prime.} \\ & \equiv 2^{\color{#3D99F6}1}+ 1 \equiv 3 \equiv \boxed 0 \text{ (mod 3)} \end{aligned}

True , 2 2 n 1 + 1 2^{2n-1}+1 is always a multiple of 3 for all natural number n n .


References:

Isn't 0 a natural number?

Simion Amarghiloaiei - 2 years, 4 months ago

Log in to reply

No, 0 is a whole number but not a natural number.

Chew-Seong Cheong - 2 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...