True or false or it depends?

Algebra Level 3

True or false :

If a ( 1 b + 1 c ) , b ( 1 c + 1 a ) , c ( 1 a + 1 b ) a\left(\dfrac{1}{b} + \dfrac{1}{c}\right) , b\left(\dfrac{1}{c} + \dfrac{1}{a}\right) , c\left(\dfrac{1}{a} + \dfrac{1}{b}\right) are in arithmetic progression where a , b , c a,b,c are real numbers not equal to 0 then a 3 + c 3 + 6 a b c a^3 + c^3 + 6abc equal to 8 b 3 8b^3 .

False It depends True

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Ashish Menon
May 24, 2016

If a ( 1 b + 1 c ) , b ( 1 c + 1 a ) , c ( 1 a + 1 b ) a\left(\dfrac{1}{b} + \dfrac{1}{c}\right) , b\left(\dfrac{1}{c} + \dfrac{1}{a}\right) , c\left(\dfrac{1}{a} + \dfrac{1}{b}\right) is in AP,
a ( 1 b + 1 c ) + 1 , b ( 1 c + 1 a ) + 1 , c ( 1 a + 1 b ) + 1 a\left(\dfrac{1}{b} + \dfrac{1}{c}\right) + 1 , b\left(\dfrac{1}{c} + \dfrac{1}{a}\right) + 1 , c\left(\dfrac{1}{a} + \dfrac{1}{b}\right) + 1 is in A.P.
i.e. a ( 1 b + 1 c ) + a a , b ( 1 c + 1 a ) + b b , c ( 1 a + 1 b ) + c c a\left(\dfrac{1}{b} + \dfrac{1}{c}\right) + \dfrac{a}{a} , b\left(\dfrac{1}{c} + \dfrac{1}{a}\right) + \dfrac{b}{b} , c\left(\dfrac{1}{a} + \dfrac{1}{b}\right) + \dfrac{c}{c} is in A.P.
i.e. a ( 1 b + 1 c + 1 a ) , b ( 1 c + 1 a + 1 b ) , c ( 1 a + 1 b + 1 c ) a\left(\dfrac{1}{b} + \dfrac{1}{c} + \dfrac{1}{a}\right) , b\left(\dfrac{1}{c} + \dfrac{1}{a} + \dfrac{1}{b}\right) , c\left(\dfrac{1}{a} + \dfrac{1}{b} + \dfrac{1}{c}\right) is in A.P.
i.e. a , b , c a,b,c are in A.P.

So, 2 b = a + c b = a + c 2 1 2b = a + c\\ \therefore b = \dfrac{a + c}{2} \longrightarrow \boxed{1}

Now take the second equation:-
a 3 + c 3 + 6 a b c = 8 b 3 a^3 + c^3 + 6abc = 8b^3

Substituting 1 \boxed{1} in the above equation, we get:-
a 3 + c 3 + 6 a × a + c 2 × c = 8 ( a + c 2 ) 3 ( a 3 + c 3 + 3 a c ( a + c ) = 8 ( a + c ) 3 8 ( a + c ) 3 = ( a + c ) 3 a^3 + c^3 + 6a × \dfrac{a + c}{2} × c = 8{\left(\dfrac{a + c}{2}\right)}^3\\ (a^3 + c^3 + 3ac(a + c) = 8 \dfrac{{(a + c)}^3}{8}\\ {(a + c)}^3 = {(a + c)}^3 .

Since the equation satisfies, it is proved that a 3 + c 3 + 6 a b c a^3 + c^3 + 6abc is equal to 8 b 3 8b^3

So, the answer is True \color{#69047E}{\boxed{\text{True}}} .

It should be substituting 1 in above equation not 2.. Anyways, Awesome solution.. Adding 1 was a creative approach.. Loved it..

Sagar Shah - 5 years ago

Log in to reply

Thanks! :) :)

Ashish Menon - 5 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...