True Statement

Geometry Level 2

For 0 < x < π 2 0<x<\dfrac{π}{2} , which of the following statements is true?

A : sin ( cos x ) < cos ( sin x ) < cos x B : cos x < sin ( cos x ) < cos ( sin x ) C : sin ( cos x ) < cos x < cos ( sin x ) D : None of the above. \begin{array} {ll} \textbf A: & \sin(\cos x) < \cos(\sin x) < \cos x \\ \\ \textbf B: & \cos x < \sin(\cos x) < \cos(\sin x) \\ \\ \textbf C: & \sin(\cos x) < \cos x < \cos(\sin x) \\ \\ \textbf D: & \text{None of the above.} \end{array}

D \textbf D A \textbf A B \textbf B C \textbf C

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
May 26, 2020

For 0 < x < π 2 0 < x < \frac \pi 2 , cos x \cos x decreases as x x increases. Since sin x = x x 3 3 ! + x 5 5 ! \sin x = x - \dfrac {x^3}{3!} + \dfrac {x^5}{5!} - \cdots , sin x < x \implies \sin x < x . Therefore cos ( sin x ) > cos x \cos (\sin x) > \cos x .

Now consider f ( x ) = cos x f(x) = \cos x and g ( x ) = sin ( cos x ) g(x) = \sin (\cos x) . We note that f ( x ) = g ( x ) f(x) = g(x) , when x = π 2 x = \dfrac \pi 2 that is out the range of 0 < x < π 2 0 < x < \dfrac \pi 2 , and f ( x ) = sin x < 0 f'(x) = - \sin x < 0 and g ( x ) = sin x cos ( cos x ) < 0 g'(x) = -\sin x \cos(\cos x) < 0 for 0 < x < π 2 0 < x < \dfrac \pi 2 . They are both monotonically decreasing functions. Since f ( 0 ) = 1 f(0) = 1 and g ( 0 ) = sin 1 < f ( 0 ) g(0) = \sin 1 < f(0) , and f ( x ) f(x) and g ( x ) g(x) do not intersect between 0 < x < π 2 0 < x < \dfrac \pi 2 , f ( x ) > g ( x ) f(x) > g(x) between the interval.

Therefore we have C : sin ( cos x ) < cos x < cos ( sin x ) \boxed{\textbf C}: \sin (\cos x) < \cos x < \cos (\sin x) .

..........sir please visit my problem

In the folllowing range we can,say that sinx<x......(1) ..so,cos(sinx)>cosx.....(2) Put...x=cosx in equation 1 So,cosx>sin(cosx)......(3) Therefore, Cos(sinx)>cosx>sin(cosx).........

0 < x < π 2 π 2 > 1 > sin x > 0 , π 2 > 1 > cos x > 0 0<x<\dfrac{π}{2}\implies \dfrac{π}{2}>1>\sin x>0,\dfrac{π}{2}>1>\cos x>0

For these values of sin x \sin x and cos x , sin ( cos x ) < cos x \cos x, \sin (\cos x)<\cos x

sin x < x cos ( sin x ) > cos x \sin x<x\implies \cos (\sin x) >\cos x .

Therefore sin ( cos x ) < cos x < cos ( sin x ) \boxed {\sin (\cos x) <\cos x<\cos (\sin x) }

https://brilliant.org/problems/do-you-know-number-theory-2/.....i have updated my question...please visit it

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...