TRUE XOR TRUE = FALSE

Logic Level 1

T R U E X O R + T R U E F A L S E \begin{array} { c c c c c c } && T & R & U & E \\ && & X & O &R \\ +&& T & R & U & E \\ \hline &F& A & L & S & E \\ \hline\hline \end{array} Given that every letter corresponds to a different digit, what does R + E R + E equal to?

12 11 9 8 10

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

8 solutions

Pop Wong
Aug 28, 2020

From the unit digit column,

2 E + R = 10 n + E for some integer n E + R = 10 n E + R = 10 0<E+R<20 \begin{aligned} 2E + R &= 10n + E \hspace{5mm} \text{for some integer n} \\ E + R &= 10n \\ \implies E+R &= 10 \hspace{15mm} \because \text{0<E+R<20} \end{aligned}

Hghhhhhbbn

ehhshs ebshshns - 8 months, 1 week ago

Why 10n ? I don't understand

Bonjour Àtous - 7 months, 2 weeks ago

Log in to reply

Because summation of 3 one digit numbers can be greater than 10. So 1st line has 10n but after the calculation we see that actually 10n is a summation of 2 one digit numbers which is less than 20. So n becomes 1.

Saad Khondoker - 4 months, 3 weeks ago
Lukas Struck
Aug 26, 2020

Scroll down for python exhaustive search.

We just have to look at the last column:

E + R + E ( m o d 10 ) = E E E + R + E \pmod{10} = E | - E

R + E ( m o d 10 ) = 0 R + E \pmod{10} = 0

since R and E can't be 0 at the same time, R + E must equal 10.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
# does an exhaustive search of all possible combinations
def cryptogramSolver():
    possibleVals = list(range(10))

    inStr = ["TRUE", "XOR", "TRUE"]
    outStr = "FALSE"
    valMap = {}  # will be generated later

    # create entries for unknown chars
    def generateValueMap(s):
        for char in s:
            if char not in valMap:
                if not valMap.values():
                    valMap[char] = 0
                else:
                    valMap[char] = max(valMap.values()) + 1

    # ignore leading 0 cases
    def constraints(permutation):
        return permutation[valMap["T"]] is not 0 \
               and permutation[valMap["X"]] is not 0 \
               and permutation[valMap["F"]] is not 0

    def cryptogramToInt(cryptogram, permutation):
        accumulator = 0
        for index, char in enumerate(cryptogram):
            accumulator += permutation[valMap[char]] * (10 ** (len(cryptogram) - index - 1))
        return accumulator

    def addsUp(permutation):
        inI = 0
        for inS in inStr:
            inI += cryptogramToInt(inS, permutation)
        outI = cryptogramToInt(outStr, permutation)
        return inI == outI and constraints(permutation)

    for inS in inStr:
        generateValueMap(inS)
    generateValueMap(outStr)

    workingPermutations = set()
    for perm in itertools.permutations(possibleVals):
        if addsUp(perm):
            # ignore unused indices in the permutation
            workingPermutations.add(perm[:len(valMap)])

    for perm in workingPermutations:
        print("Working permutation:")
        for key in valMap:
            print(key, perm[valMap[key]])
        print("R + E =", perm[valMap["E"]] + perm[valMap["R"]], "\n")


cryptogramSolver()

R + E = 10 R+E = 10 every time.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
Working permutation:
T 5
R 7
U 8
E 3
X 4
O 9
F 1
A 2
L 0
S 6
R + E = 10 

Working permutation:
T 7
R 8
U 0
E 2
X 9
O 3
F 1
A 6
L 5
S 4
R + E = 10 

Working permutation:
T 6
R 7
U 8
E 3
X 5
O 2
F 1
A 4
L 0
S 9
R + E = 10 

Working permutation:
T 4
R 8
U 9
E 2
X 5
O 7
F 1
A 0
L 3
S 6
R + E = 10 

Working permutation:
T 6
R 2
U 7
E 8
X 5
O 4
F 1
A 3
L 0
S 9
R + E = 10 

Working permutation:
T 7
R 2
U 6
E 8
X 9
O 0
F 1
A 5
L 4
S 3
R + E = 10 

Working permutation:
T 6
R 8
U 3
E 2
X 9
O 0
F 1
A 4
L 5
S 7
R + E = 10 

Working permutation:
T 6
R 2
U 7
E 8
X 9
O 0
F 1
A 3
L 4
S 5
R + E = 10 

Chill, this is waaaaay to complicated:

1
2
3
4
5
from itertools import permutations

for t,r,u,e,x,o,f,a,l,s in permutations('0123456789',10):
    if 2*int(t+r+u+e)+int(x+o+r)==int(f+a+l+s+e):
        print(int(r)+int(e))

1
10

Anonymous1 Assassin - 3 months, 3 weeks ago

Just used simple code to solve this:

1
2
3
4
5
from itertools import permutations

for t,r,u,e,x,o,f,a,l,s in permutations('0123456789',10):
    if 2*int(t+r+u+e)+int(x+o+r)==int(f+a+l+s+e):
        print(int(r)+int(e))

1
10

Joseph Jennings
Dec 19, 2020

E+R+E is equal to some number ending in the digit E. Therefore R+E is either 10 or 20. 20 is not a choice, so the answer is 10.

R + E ≠ 20

Saya Suka - 2 months, 2 weeks ago
Yuriy Kazakov
Aug 29, 2020
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
spisok=[]
def perm(p,k=0):
   global m
   if(k==len(p)):
      m=m+1
      t,r,u,e,x,o,f,a,l,s=p
      w1=2000*t+200*r+20*u+2*e+x*100+o*10+r
      w2=f*10000+a*1000+l*100+s*10+e
      if w2==w1 and f>0: 
        spisok.append([t,r,u,e,x,o,f,a,l,s])
        print('  ',1000*t+100*r+10*u+1*e)
        if x>0:
          print('   ',x*100+o*10+r)
        else:
          print('    ',x*100+o*10+r)
        print('  ',1000*t+100*r+10*u+1*e)
        print(' ',f*10000+a*1000+l*100+s*10+e)
        print()
   else:
      for i in range(k,len(p)):
         p[k],p[i] = p[i],p[k]
         perm(p, k+1)
         p[k],p[i] = p[i],p[k]
m=0
perm([1,2,3,4,5,6,7,8,9,0])
spisok.sort()
print (spisok,len(spisok))
print (m, "10! вариантов просмотрено - найдены решения задачи")

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
   4892
    578
   4892
  10362

   5783
    497
   5783
  12063

   6278
    542
   6278
  13098

   6278
    902
   6278
  13458

   6397
     53
   6397
  12847

   6783
    527
   6783
  14093

   6832
    908
   6832
  14572

   7238
     92
   7238
  14568

   7268
    902
   7268
  15438

   7684
     26
   7684
  15394

   7802
    938
   7802
  16542

No need to used this much complex code:

1
2
3
4
5
from itertools import permutations

for t,r,u,e,x,o,f,a,l,s in permutations('0123456789',10):
    if 2*int(t+r+u+e)+int(x+o+r)==int(f+a+l+s+e):
        print(int(r)+int(e))

1
10

Anonymous1 Assassin - 3 months, 3 weeks ago

4 + 6 + 4 = 1 4 \boxed{4}+\boxed{6}+\boxed{4}=1\boxed{4}

R = 6 , E = 4 , R + E = 10 R= 6, E=4, R+E=\boxed{10}

How did you arrive at this solution? My exhaustive search did not find a solution with R = 6 , E = 4 R=6,E=4

Lukas Struck - 9 months, 2 weeks ago

Log in to reply

I didn't look at other alphabets, maybe it doesn't work well with them

A Former Brilliant Member - 9 months, 2 weeks ago
Sols Clone Silva
Feb 6, 2021

I guessed and then the thing worked. so do the thing and the thing dies the thing. the thing works is you just do the thing

brilliant? ya

Sols Clone Silva - 4 months ago
Sayalee Thorkar
Dec 2, 2020

The equation consisting the last column elements will be equal to

2E +R = E

Rearranging it,

E+R = 0

From the options given below , we only have one such number whose unit place has 0.

So,

E+R =10

EZY :-)

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...