Necessary /Sufficient - Trigo

Geometry Level 4

Consider the following two statements:

P: 1 + sin θ = a \sqrt { 1+ \sin{ \theta } } =a

Q: sin θ 2 + cos θ 2 = a \sin { \cfrac { \theta }{ 2 } } +\cos { \cfrac { \theta }{ 2 } } =a

Which of the following statements is true?

(A) P is necessary and sufficient for Q.

(B) P is necessary but not sufficient for Q.

(C) P is sufficient but not necessary for Q.

(D) P is neither necessary nor sufficient for Q.

Like my problem? Try the set of problems here: AYWC? .
A C B D

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Ayush Verma
Apr 4, 2015

( 1 ) I f a = 1 + sin θ = ( sin θ 2 + cos θ 2 ) 2 a = sin θ 2 + cos θ 2 ( 2 ) I f a = sin θ 2 + cos θ 2 a 2 = 1 + sin θ 1 + sin θ = a S o w e c a n c o n c l u d e t h a t n o n e o f t h e s t a t e m e n t s a r e n e c e s s a r y o r s u f f i c i e n t f o r e a c h o t h e r \left( 1 \right) If\quad a=\sqrt { 1+\sin { \theta } } \\ \\ =\sqrt { { \left( \sin { \cfrac { \theta }{ 2 } } +\cos { \cfrac { \theta }{ 2 } } \right) }^{ 2 } } \\ \\ \Rightarrow a=\left| \sin { \cfrac { \theta }{ 2 } } +\cos { \cfrac { \theta }{ 2 } } \right| \\ \\ \\ \left( 2 \right) If\quad a=\sin { \cfrac { \theta }{ 2 } } +\cos { \cfrac { \theta }{ 2 } } \\ \\ \Rightarrow { a }^{ 2 }=1+\sin { \theta } \\ \\ \Rightarrow \sqrt { 1+\sin { \theta } } =\left| a \right| \\ \\ So\quad we\quad can\quad conclude\quad that\quad none\quad of\quad the\quad statements\quad are\quad \\ \\ necessary\quad or\quad sufficient\quad for\quad each\quad other

Despicable Tamim
Apr 24, 2015

both of the equation is same statement .... so we can say none of them is necessary or sufficient for each other

Soumo Mukherjee
Apr 3, 2015

Since 1 + sin θ \sqrt { 1+ \sin{ \theta } } is never negative while sin θ 2 + cos θ 2 \sin { \cfrac { \theta }{ 2 } } +\cos { \cfrac { \theta }{ 2 } } may take negative values, P is neither necessary nor sufficient for Q.

I contest your point that the square root of 1+ sin θ \sin \theta cannot be negative, if you say so you miss to add for a>0 as a premise, indeed eliminating a in both equations you get an identity.

Mariano PerezdelaCruz - 6 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...