truly parametric

Calculus Level 1

if y = cos 2 t y= \cos{2t} and x = sin t x= \sin{t} .

Find the expression for d y d x \frac{dy}{dx} .

1) 2 sin t 2\sin{t}

2) 4 sin t -4\sin{t}

3) 4 sin 2 t -4\sin{2t}

4) 2 sin 2 t -2\sin{2t} type your answer as 1 or 2 or 3 or 4 in the answer box


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

We have , y = c o s ( 2 t ) and x = s i n ( t ) y = cos(2t) \text{ and } x = sin(t) Now differentiating both equations we get, d y d t = 2 s i n ( 2 t ) ( i ) \frac{dy}{dt} = -2sin(2t) \rightarrow(i) and, d x d t = c o s t ( i i ) \frac{dx}{dt} = cost \rightarrow(ii) ( i ) / ( i i ) (i)/(ii) gives, d y d x = 2 × s i n ( 2 t ) c o s ( t ) 2 × 2 × s i n t × c o s t c o s t 4 s i n t \frac{dy}{dx} = \dfrac{-2 \times sin(2t)}{cos(t)} \Rightarrow \dfrac{-2\times 2\times sint\times cost}{cost} \Rightarrow \boxed{-4sint}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...