In the truncated right hexagonal prism above, the hexagonal base has a side length of and the lateral sides have lengths and and .
If is the total surface area, find .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
The average length of the lateral edges is 3 3 a + 2 .
Let O ′ : ( 0 , 0 , 0 ) be center of the hexagonal base and erect a normal at O ′ so that the top surface is centered at O : ( 0 , 0 , 3 3 a + 2 ) .
Using coordinates for the surface we have:
F : ( 2 a , − 2 3 a , a + 1 ) , A : ( a , 0 , a + 1 ) , B : ( 2 a , 2 3 a , a + 1 )
C : ( − 2 a , 2 3 a , a + 1 ) , D : ( − a , 0 , a ) and E : ( − 2 a , − 2 3 a , a )
⟹ F A = A B = B C = D E = a and C D = E F = a 2 + 1
and the radii O F = O A = O B = O C = 3 9 a 2 + 1 and O D = O E = 3 9 a 2 + 4
h = 6 2 7 a 2 + 4 ⟹ A △ F O A = 1 2 2 7 a 2 + 4 a = A △ A O B = A △ B O C .
h ∗ = 6 2 7 a 2 + 1 6 ⟹ A △ D O E = 1 2 2 7 a 2 + 1 6 a .
∣ U X V ∣ = ∣ U ∣ ∣ V ∣ sin ( θ ) = ∣ U ∣ d ⟹ d = ∣ U ∣ ∣ U X V ∣
U = a i + 0 j + k
V = 2 a i + 2 3 a j + 3 2 k
⟹
U X V = − 2 3 a i − 6 a j + 2 3 a 2 k
⟹ ∣ U X V ∣ = 6 2 7 a 2 + 2 8 a and ∣ U ∣ = 1 + a 2 ⟹ d = 6 1 1 + a 2 2 7 a 2 + 2 8 a ⟹ A △ C O D = A △ E O F =
2 1 ( 1 + a 2 ) ( 6 1 ) ( 1 + a 2 2 7 a 2 + 2 8 ) a = 1 2 2 7 a 2 + 2 8 a
⟹ A s u r f a c e = 1 2 2 a 2 7 a 2 + 2 8 + 3 a 2 7 a 2 + 4 + a 2 7 a 2 + 1 6
A h e x a g o n a l b a s e = 6 ( 2 1 ) ( a ) ( 2 3 ) a = 2 3 3 a 2
For the area of the trapezoids we have:
A F A F ′ A ′ = A A B A ′ B ′ = A B C B ′ C ′ = 2 1 ( 2 ) ( a + 1 ) ( a ) = ( a + 1 ) a
and
A C D C ′ D ′ = A E F E ′ F ′ = 2 1 ( 2 a + 1 ) a = 2 2 a + 1 a
and A D E D ′ E ′ = 2 1 ( 2 a ) a = a 2
⟹ The total area of the trapezoids A T = 3 a 2 + 3 a + 2 a 2 + a + a 2 = 6 a 2 + 4 a
⟹
S ( a ) = 1 2 2 a 2 7 a 2 + 2 8 + 3 a 2 7 a 2 + 4 + a 2 7 a 2 + 1 6 + 3 2 3 a 2 + 6 a 2 + 4 a =
1 2 2 a 2 7 a 2 + 2 8 + 3 a 2 7 a 2 + 4 + a 2 7 a 2 + 1 6 + 1 8 3 a 2 + 7 2 a 2 + 4 8 a
⟹
∫ 0 1 S ( a ) d a =
1 2 1 ( 8 1 2 ( 5 5 ) 2 3 + 2 7 1 ( 3 1 ) 2 3 + 8 1 1 ( 4 3 ) 2 3 + 6 3 + 4 8 − 8 1 1 1 2 7 − 2 7 8 − 8 1 6 4 )
≈ 6 . 1 3 2 7 2 .