Truncated Right Hexagonal Prism!

Geometry Level pending

In the truncated right hexagonal prism above, the hexagonal base has a side length of a a and the lateral sides have lengths F F = A A = B B = C C = a + 1 FF' = AA' = BB' = CC' = a + 1 and D D = E E = a DD' = EE' = a and O O = 3 a + 2 3 O'O = \dfrac{3a + 2}{3} .

If S ( a ) S(a) is the total surface area, find 0 1 S ( a ) d a \displaystyle\int_{0}^{1} S(a) \:\ da .


The answer is 6.13272.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Feb 19, 2020

The average length of the lateral edges is 3 a + 2 3 \dfrac{3a + 2}{3} .

Let O : ( 0 , 0 , 0 ) O':(0,0,0) be center of the hexagonal base and erect a normal at O O' so that the top surface is centered at O : ( 0 , 0 , 3 a + 2 3 ) O: (0,0,\dfrac{3a + 2}{3}) .

Using coordinates for the surface we have:

F : ( a 2 , 3 2 a , a + 1 ) , A : ( a , 0 , a + 1 ) , B : ( a 2 , 3 2 a , a + 1 ) F: (\dfrac{a}{2},-\dfrac{\sqrt{3}}{2}a,a + 1), A:(a,0,a + 1), B:(\dfrac{a}{2},\dfrac{\sqrt{3}}{2}a,a + 1)

C : ( a 2 , 3 2 a , a + 1 ) , D : ( a , 0 , a ) C:(-\dfrac{a}{2},\dfrac{\sqrt{3}}{2}a,a + 1), D:(-a,0,a) and E : ( a 2 , 3 2 a , a ) E:(-\dfrac{a}{2},-\dfrac{\sqrt{3}}{2}a,a)

F A = A B = B C = D E = a \implies FA = AB = BC = DE = a and C D = E F = a 2 + 1 CD = EF = \sqrt{a^2 + 1}

and the radii O F = O A = O B = O C = 9 a 2 + 1 3 OF =OA = OB = OC = \dfrac{\sqrt{9a^2 + 1}}{3} and O D = O E = 9 a 2 + 4 3 OD = OE = \dfrac{\sqrt{9a^2 + 4}}{3}

h = 27 a 2 + 4 6 A F O A = 27 a 2 + 4 12 a = A A O B = h = \dfrac{\sqrt{27a^2 + 4}}{6} \implies A_{\triangle{FOA}} = \dfrac{\sqrt{27a^2 + 4}}{12}a = A_{\triangle{AOB}} = A B O C A_{\triangle{BOC}} .

h = 27 a 2 + 16 6 A D O E = 27 a 2 + 16 12 a h^{*} = \dfrac{\sqrt{27a^2 + 16}}{6} \implies A_{\triangle{DOE}} = \dfrac{\sqrt{27a^2 + 16}}{12}a .

U X V = U V sin ( θ ) = U d |\vec{U} X \vec{V}| = |\vec{U}| |\vec{V}|\sin(\theta) = |\vec{U}| d \implies d = U X V U d = \dfrac{|\vec{U} X \vec{V}|}{ |\vec{U}|}

U = a i + 0 j + k \vec{U} =a \vec{i} + 0\vec{j} + \vec{k}

V = a 2 i + 3 2 a j + 2 3 k \vec{V} = \dfrac{a}{2}\vec{i} + \dfrac{\sqrt{3}}{2}a\vec{j} + \dfrac{2}{3}\vec{k}

\implies

U X V = 3 2 a i a 6 j + 3 2 a 2 k \vec{U} X \vec{V} = -\dfrac{\sqrt{3}}{2}a\vec{i} - \dfrac{a}{6}\vec{j} + \dfrac{\sqrt{3}}{2}a^2\vec{k}

U X V = 27 a 2 + 28 6 a \implies |\vec{U} X \vec{V}| = \dfrac{\sqrt{27a^2 + 28}}{6}a and U = 1 + a 2 |\vec{U}| = \sqrt{1 + a^2} \implies d = 1 6 27 a 2 + 28 1 + a 2 a d = \dfrac{1}{6}\sqrt{\dfrac{27a^2 + 28}{1 + a^2}}a \implies A C O D = A E O F = A_{\triangle{COD}} = A_{\triangle{EOF}} =

1 2 ( 1 + a 2 ) ( 1 6 ) ( 27 a 2 + 28 1 + a 2 ) a = 27 a 2 + 28 12 a \dfrac{1}{2}(\sqrt{1 + a^2})(\dfrac{1}{6})(\sqrt{\dfrac{27a^2 + 28}{1 + a^2}})a = \dfrac{\sqrt{27a^2 + 28}}{12}a

A s u r f a c e = 2 a 27 a 2 + 28 + 3 a 27 a 2 + 4 + a 27 a 2 + 16 12 \implies A_{surface} = \dfrac{2a\sqrt{27a^2 + 28} + 3a\sqrt{27a^2 + 4} + a\sqrt{27a^2 + 16}}{12}

A h e x a g o n a l b a s e = 6 ( 1 2 ) ( a ) ( 3 2 ) a = 3 3 2 a 2 A_{hexagonal base} = 6(\dfrac{1}{2})(a)(\dfrac{\sqrt{3}}{2})a = \dfrac{3\sqrt{3}}{2}a^2

For the area of the trapezoids we have:

A F A F A = A A B A B = A B C B C = 1 2 ( 2 ) ( a + 1 ) ( a ) = ( a + 1 ) a A_{FAF'A'} = A_{ABA'B'} = A_{BCB'C'} = \dfrac{1}{2}(2)(a + 1)(a) = (a + 1)a

and

A C D C D = A E F E F = 1 2 ( 2 a + 1 ) a = 2 a + 1 2 a A_{CDC'D'} = A_{EFE'F'} = \dfrac{1}{2}(2a + 1)a = \dfrac{2a + 1}{2}a

and A D E D E = 1 2 ( 2 a ) a = a 2 A_{DED'E'} = \dfrac{1}{2}(2a)a = a^2

\implies The total area of the trapezoids A T = 3 a 2 + 3 a + 2 a 2 + a + a 2 = 6 a 2 + 4 a A_{T} = 3a^2 + 3a + 2a^2 + a + a^2 = 6a^2 + 4a

\implies

S ( a ) = 2 a 27 a 2 + 28 + 3 a 27 a 2 + 4 + a 27 a 2 + 16 12 + 3 3 2 a 2 + 6 a 2 + 4 a = S(a) = \dfrac{2a\sqrt{27a^2 + 28} + 3a\sqrt{27a^2 + 4} + a\sqrt{27a^2 + 16}}{12} + 3\dfrac{\sqrt{3}}{2}a^2 + 6a^2 + 4a =

2 a 27 a 2 + 28 + 3 a 27 a 2 + 4 + a 27 a 2 + 16 + 18 3 a 2 + 72 a 2 + 48 a 12 \dfrac{2a\sqrt{27a^2 + 28} + 3a\sqrt{27a^2 + 4} + a\sqrt{27a^2 + 16} + 18\sqrt{3}a^2 + 72a^2 + 48a}{12}

\implies

0 1 S ( a ) d a = \displaystyle\int_{0}^{1} S(a) \:\ da =

1 12 ( 2 81 ( 55 ) 3 2 + 1 27 ( 31 ) 3 2 + 1 81 ( 43 ) 3 2 + 6 3 + 48 112 7 81 8 27 64 81 ) \dfrac{1}{12}(\dfrac{2}{81}(55)^{\frac{3}{2}} + \dfrac{1}{27}(31)^{\frac{3}{2}} + \dfrac{1}{81}(43)^{\frac{3}{2}} + 6\sqrt{3} + 48 - \dfrac{112\sqrt{7}}{81} - \dfrac{8}{27} - \dfrac{64}{81} )

6.13272 \approx \boxed{6.13272} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...