Truncated Right Hexagonal Prism

Geometry Level pending

In the truncated right hexagonal prism above, the hexagonal base has a side length of 1 1 and the lateral sides have lengths F F = A A = B B = C C = 2 FF' = AA' = BB' = CC' = 2 and D D = E E = 1 DD' = EE' = 1 and O O = 5 3 O'O = \dfrac{5}{3} .

If the total surface area A s = a + b c + d e + c f + g h A_{s} = \dfrac{a + b\sqrt{c} + d\sqrt{e} + c\sqrt{f} + \sqrt{g}}{h} , where a , b , c , d , e , f , g a,b,c,d,e,f,g and h h are coprime positive integers, find a + b + c + d + e + f + g + h a + b + c + d + e + f + g + h .

Note: The average of the lateral sides is 5 3 \dfrac{5}{3} .


The answer is 284.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Feb 16, 2020

The average length of the lateral edges is 5 3 \dfrac{5}{3} .

Let O : ( 0 , 0 , 0 ) O':(0,0,0) be center of the hexagonal base and erect a normal at O O' so that the top surface is centered at O : ( 0 , 0 , 5 3 ) O: (0,0,\dfrac{5}{3}) .

Using coordinates for the surface we have:

F : ( 1 2 , 3 2 , 2 ) , A : ( 1 , 0 , 2 ) , B : ( 1 2 , 3 2 , 2 ) F: (\dfrac{1}{2},-\dfrac{\sqrt{3}}{2},2), A:(1,0,2), B:(\dfrac{1}{2},\dfrac{\sqrt{3}}{2},2) C : ( 1 2 , 3 2 , 2 ) , D : ( 1 , 0 , 1 ) C:(-\dfrac{1}{2},\dfrac{\sqrt{3}}{2},2), D:(-1,0,1)

and E : ( 1 2 , 3 2 , 1 ) E:(-\dfrac{1}{2},-\dfrac{\sqrt{3}}{2},1)

F A = A B = B C = D E = 1 \implies FA = AB = BC = DE = 1 and C D = E F = 2 CD = EF = \sqrt{2}

and the radii O F = O A = O B = O C = 10 3 OF =OA = OB = OC = \dfrac{\sqrt{10}}{3} and O D = O E = 13 3 OD = OE = \dfrac{\sqrt{13}}{3}

h = 31 6 A F O A = 31 12 = A A O B = h = \dfrac{\sqrt{31}}{6} \implies A_{\triangle{FOA}} = \dfrac{\sqrt{31}}{12} = A_{\triangle{AOB}} = A B O C A_{\triangle{BOC}} .

h = 43 6 A D O E = 43 12 h^{*} = \dfrac{\sqrt{43}}{6} \implies A_{\triangle{DOE}} = \dfrac{\sqrt{43}}{12} .

U X V = U V sin ( θ ) = U d |\vec{U} X \vec{V}| = |\vec{U}| |\vec{V}|\sin(\theta) = |\vec{U}| d \implies d = U X V U d = \dfrac{|\vec{U} X \vec{V}|}{ |\vec{U}|}

U = i + 0 j + k \vec{U} = \vec{i} + 0\vec{j} + \vec{k}

V = 1 2 i + 3 2 j + 2 3 k \vec{V} = \dfrac{1}{2}\vec{i} + \dfrac{\sqrt{3}}{2}\vec{j} + \dfrac{2}{3}\vec{k}

\implies

U X V = 3 2 i 1 6 j + 3 2 k \vec{U} X \vec{V} = -\dfrac{\sqrt{3}}{2}\vec{i} - \dfrac{1}{6}\vec{j} + \dfrac{\sqrt{3}}{2}\vec{k}

( U X V = 55 6 \implies (|\vec{U} X \vec{V}| = \dfrac{\sqrt{55}}{6} and U = 2 |\vec{U}| = \sqrt{2} \implies d = 1 6 55 2 d = \dfrac{1}{6}\sqrt{\dfrac{55}{2}} \implies A C O D = A E O F = A_{\triangle{COD}} = A_{\triangle{EOF}} =

1 2 ( 2 ) ( 1 6 ) ( 55 2 ) = 55 12 \dfrac{1}{2}(\sqrt{2})(\dfrac{1}{6})(\sqrt{\dfrac{55}{2}}) = \dfrac{\sqrt{55}}{12}

A s u r f a c e = 2 55 + 3 31 + 43 12 \implies A_{surface} = \dfrac{2\sqrt{55} + 3\sqrt{31} + \sqrt{43}}{12}

A h e x a g o n a l b a s e = 6 ( 1 2 ) ( 1 ) ( 3 2 ) = 3 3 2 A_{hexagonal base} = 6(\dfrac{1}{2})(1)(\dfrac{\sqrt{3}}{2}) = \dfrac{3\sqrt{3}}{2}

For the area of the trapezoids we have:

A F A F A = A A B A B = A B C B C = 1 2 ( 4 ) ( 1 ) = 2 A_{FAF'A'} = A_{ABA'B'} = A_{BCB'C'} = \dfrac{1}{2}(4)(1) = 2

and

A C D C D = A E F E F = 1 2 ( 3 ) ( 1 ) = 3 2 A_{CDC'D'} = A_{EFE'F'} = \dfrac{1}{2}(3)(1) = \dfrac{3}{2}

and A D E D E = 1 2 ( 2 ) ( 1 ) = 1 A_{DED'E'} = \dfrac{1}{2}(2)(1) = 1

\implies The total area of the trapezoids A T = 3 ( 2 ) + 2 ( 3 2 ) + 1 = 10 A_{T} = 3(2) + 2(\dfrac{3}{2}) + 1 = 10 .

A s = 2 55 + 3 31 + 43 12 + 3 3 2 + 10 = \implies A_{s} = \dfrac{2\sqrt{55} + 3\sqrt{31} + \sqrt{43}}{12} + \dfrac{3\sqrt{3}}{2} + 10 =

120 + 18 3 + 2 55 + 3 31 + 43 12 = \dfrac{120 + 18\sqrt{3} + 2\sqrt{55} + 3\sqrt{31} + \sqrt{43}}{12} =

a + b c + d e + c f + g h \dfrac{a + b\sqrt{c} + d\sqrt{e} + c\sqrt{f} + \sqrt{g}}{h} \implies

a + b + c + d + e + f + g + h = 284 a + b + c + d + e + f + g + h = \boxed{284} .

Very nice - I did it slightly differently (just worked out the edge lengths and used Heron for the areas for the triangles). One point - you mention the "top hexagon", but the points A B C D E F ABCDEF are not coplanar (the points A B C D ABCD share a plane - specifically z = 2 z=2 - but E E and F F don't belong to it), so the shape is not really a hexagon (which is a plane figure). I'm not sure this really affects your solution, though.

Chris Lewis - 1 year, 3 months ago

Log in to reply

I used your method it in my previous problem involving a truncated right triangular prism.

I should have stated the top surface.

Rocco Dalto - 1 year, 3 months ago

1 pending report

Vote up reports you agree with

×

Problem Loading...

Note Loading...

Set Loading...