Trust your identities

Algebra Level 2

Find the value of 16 21 × 3 7 \dfrac {16}{21} \times \dfrac 37 and use it to simplify the following fraction:

( 16 21 ) 3 ( 3 7 ) 3 ( 16 21 + 3 7 ) 2 16 49 \Large \frac {\left(\frac {16}{21}\right)^3 - \left(\frac 37\right)^3}{\left(\frac {16}{21} + \frac 37\right)^2 - \frac {16}{49}}

Trust your identities 2

1 2 3 \frac{2}{3} 1 3 \frac{1}{3} 3367 12601 \frac{3367}{12601} 25 21 \frac{25}{21}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Ethan Mandelez
Dec 2, 2020

A very helpful solution!

Same question but for 4 4 th power?

Yajat Shamji - 6 months, 1 week ago

Let a = 16 21 a=\dfrac {16}{21} and b = 3 7 b = \dfrac 37 . Then a b = 16 21 × 3 7 = 16 49 ab = \dfrac {16}{21} \times \dfrac 37 = \dfrac {16}{49} . And

( 16 21 ) 3 ( 3 7 ) 3 ( 16 21 ) 2 16 49 = a 3 b 3 ( a + b ) 2 a b = ( a b ) ( a 2 + a b + b 2 ) a 2 + 2 a b + b 2 a b = ( a b ) ( a 2 + a b + b 2 ) a 2 + a b + b 2 = a b = 16 21 3 7 = 1 3 \begin{aligned} \frac {\left(\frac {16}{21} \right)^3-\left(\frac 37 \right)^3}{\left(\frac {16}{21} \right)^2 - \blue{\frac {16}{49}}} & = \frac {a^3-b^3}{(a+b)^2 - \blue{ab}} \\ & = \frac {(a-b)(a^2 + ab + b^2)}{a^2 + 2ab +b^2 - ab} \\ & = \frac {(a-b)(a^2+ab+b^2)}{a^2+ab+b^2} \\ & = a - b = \frac {16}{21} - \frac 37 = \boxed{\frac 13} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...