An algebra problem by P C

Algebra Level 5

x x 2 + 1 + 2 x y + y y 2 + 1 + 2 2 y x y + 2 x x 2 4 x + 5 + 2 2 x x 2 \large \dfrac{\sqrt{x}}{x^2+1+2\sqrt{xy}}+\dfrac{\sqrt{y}}{y^2+1+2\sqrt{2y-xy}}+\dfrac{\sqrt{2-x}}{x^2-4x+5+2\sqrt{2x-x^2}}

If x x and y y are real numbers satisfying 1 x + 1 y + 1 2 x = 3 \dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}+\dfrac{1}{\sqrt{2-x}}=3 , find the maximum value of the expression above.


The answer is 0.75.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

P C
Sep 27, 2016

First, we see that y 0 ; 0 x 2 y\geq 0; 0\leq x\leq 2 . Set a = x , b = y , c = 2 x a=\sqrt{x}, b=\sqrt{y}, c=\sqrt{2-x} and we get 1 a + 1 b + 1 c = 3 \frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3 , the expression is rewritten as c y c a a 4 + 1 + 2 a b = c y c 1 a 3 + 1 a + 2 b \sum_{cyc}\frac{a}{a^4+1+2ab}=\sum_{cyc}\frac{1}{a^3+\frac{1}{a}+2b} By AM-GM we get c y c 1 a 3 + 1 a + 2 b 1 2 c y c 1 a + b \sum_{cyc}\frac{1}{a^3+\frac{1}{a}+2b}\leq \frac{1}{2}\sum_{cyc}\frac{1}{a+b} Based on this inequality 1 t + 1 u 4 t + u \frac{1}{t}+\frac{1}{u}\geq\frac{4}{t+u} we'll have 1 2 c y c 1 a + b 1 8 . 2 ( 1 a + 1 b + 1 c ) = 3 4 = 0.75 \frac{1}{2}\sum_{cyc}\frac{1}{a+b}\leq \frac{1}{8}.2\bigg(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\bigg)=\frac{3}{4}=0.75 The equality holds when x = y = 1 x=y=1

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...