500 followers problem-1

Algebra Level 4

1 1 + a 4 + 1 1 + b 4 + 1 1 + c 4 + 1 1 + d 4 = 1 \dfrac{1}{1+a^4}+\dfrac{1}{1+b^4}+\dfrac{1}{1+c^4}+\dfrac{1}{1+d^4}=1

Let a , b , c a,b,c and d d be positive real numbers satisfying the equation above, find the minimum value of a b c d abcd .


The answer is 3.00.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Let a 2 = tan ( α ) , b 2 = tan ( β ) , c 2 = tan ( γ ) , d 2 = tan ( δ ) a^2=\tan(\alpha),b^2=\tan(\beta),c^2=\tan(\gamma),d^2=\tan(\delta) .Then cos 2 ( α ) + cos 2 ( β ) + cos 2 ( γ ) + cos 2 ( δ ) = 1 \cos^2(\alpha)+\cos^2(\beta)+\cos^2(\gamma)+\cos^2(\delta)=1 .

Now, by the AM-GM inequality, sin 2 ( α ) = cos 2 ( β ) + cos 2 ( γ ) + cos 2 ( δ ) 3 ( cos ( β ) cos ( γ ) cos ( δ ) ) 2 / 3 \sin^2(\alpha)=\cos^2(\beta)+\cos^2(\gamma)+\cos^2(\delta) \ge 3(\cos(\beta)\cos(\gamma)\cos(\delta))^{2/3} .

Multiplying this and other similar inequalities we get, sin 2 ( α ) sin 2 ( β ) sin 2 ( γ ) sin 2 ( δ ) 81 cos 2 ( α ) cos 2 ( β ) cos 2 ( γ ) cos 2 ( δ ) \sin^2(\alpha)\sin^2(\beta)\sin^2(\gamma)\sin^2(\delta) \ge 81 \cos^2(\alpha)\cos^2(\beta)\cos^2(\gamma)\cos^2(\delta) or tan ( α ) tan ( β ) tan ( γ ) tan ( δ ) 9 \tan(\alpha)\tan(\beta)\tan(\gamma)\tan(\delta) \ge 9 .

Finally, a b c d = tan ( α ) tan ( β ) tan ( γ ) tan ( δ ) 3 abcd=\sqrt{\tan(\alpha)\tan(\beta)\tan(\gamma)\tan(\delta)} \ge \color{#D61F06}{\boxed{3}} .

Great solution. FYI, there is a similar question before. From Europe With Love .

I couldn't prove that question initially, but now I can. Thanks for the enlightenment!

ZK LIn - 5 years, 3 months ago

great solution, I've never thought of this before

P C - 5 years, 3 months ago
Raushan Sharma
Feb 23, 2016

It can also be done using AM-GM only.

We have, 1 1 + a 4 + 1 1 + b 4 + 1 1 + c 4 + 1 1 + d 4 = 1 \dfrac{1}{1+a^4}+\dfrac{1}{1+b^4}+\dfrac{1}{1+c^4}+\dfrac{1}{1+d^4}=1

So, from here, we get the following four things :

1 1 + a 4 + 1 1 + b 4 + 1 1 + c 4 = d 4 1 + d 4 \dfrac{1}{1+a^4}+\dfrac{1}{1+b^4}+\dfrac{1}{1+c^4}=\dfrac{d^4}{1+d^4} ..... ( 1 ) (1)

1 1 + a 4 + 1 1 + b 4 + 1 1 + d 4 = c 4 1 + c 4 \dfrac{1}{1+a^4}+\dfrac{1}{1+b^4}+\dfrac{1}{1+d^4}=\dfrac{c^4}{1+c^4} ..... ( 2 ) (2)

1 1 + a 4 + 1 1 + c 4 + 1 1 + d 4 = b 4 1 + b 4 \dfrac{1}{1+a^4}+\dfrac{1}{1+c^4}+\dfrac{1}{1+d^4}=\dfrac{b^4}{1+b^4} ..... ( 3 ) (3)

1 1 + b 4 + 1 1 + c 4 + 1 1 + d 4 = a 4 1 + a 4 \dfrac{1}{1+b^4}+\dfrac{1}{1+c^4}+\dfrac{1}{1+d^4}=\dfrac{a^4}{1+a^4} ..... ( 2 ) (2)

So, applying AM-GM on each of the statements ( 1 ) , ( 2 ) , ( 3 ) , ( 4 ) (1), (2), (3), (4) , we have :

d 4 1 + d 4 3 1 + a 4 3 1 + b 4 3 1 + c 4 3 \dfrac{d^4}{1+d^4} \geq \dfrac{3}{\sqrt[3]{1+a^4} \sqrt[3]{1+b^4} \sqrt[3]{1+c^4}} ... ( A ) (A)

c 4 1 + c 4 3 1 + a 4 3 1 + b 4 3 1 + d 4 3 \dfrac{c^4}{1+c^4} \geq \dfrac{3}{\sqrt[3]{1+a^4} \sqrt[3]{1+b^4} \sqrt[3]{1+d^4}} ... ( B ) (B)

b 4 1 + b 4 3 1 + a 4 3 1 + c 4 3 1 + d 4 3 \dfrac{b^4}{1+b^4} \geq \dfrac{3}{\sqrt[3]{1+a^4} \sqrt[3]{1+c^4} \sqrt[3]{1+d^4}} ... ( C ) (C)

a 4 1 + a 4 3 1 + b 4 3 1 + c 4 3 1 + d 4 3 \dfrac{a^4}{1+a^4} \geq \dfrac{3}{\sqrt[3]{1+b^4} \sqrt[3]{1+c^4} \sqrt[3]{1+d^4}} ... ( D ) (D)

Multiplying ( A ) , ( B ) , ( C ) , ( D ) (A), (B), (C), (D) , we get :

( a b c d ) 4 3 4 (abcd)^4 \geq 3^4

a b c d 3 \Rightarrow abcd \geq 3

Can also be done by putting a=b=c=d.

How do you know that it can be done like that? It generally works for symmetric cases but not always.

A Former Brilliant Member - 5 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...