Try me!

Algebra Level 5

α , β , γ ( 1 + α 1 α ) 2 \large \displaystyle \sum_{\alpha,\beta,\gamma} \left(\dfrac{1+\alpha}{1-\alpha}\right)^2

Given that α , β \alpha,\beta and γ \gamma are the roots of x 3 x 1 = 0 x^3-x-1=0 , then find the value of above expression.


The answer is 51.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

6 solutions

Akshat Sharda
May 16, 2016

We can make a equation having its roots as 1 + α 1 α , 1 + β 1 β \frac{1+\alpha}{1-\alpha},\frac{1+\beta}{1-\beta} and 1 + γ 1 γ \frac{1+\gamma}{1-\gamma} .

Let y = 1 + x 1 x y=\frac{1+x}{1-x} , then x = y 1 y + 1 x=\frac{y-1}{y+1} .

Placing x = y 1 y + 1 x=\frac{y-1}{y+1} in x 3 x 1 = 0 x^3-x-1=0 .

( y 1 y + 1 ) 3 ( y 1 y + 1 ) + 1 = 0 ( y 1 ) 3 ( y 1 ) ( y + 1 ) 2 ( y + 1 ) 3 = 0 y 3 + 7 y 2 y + 1 = 0 \left(\frac{y-1}{y+1}\right)^3-\left(\frac{y-1}{y+1}\right)+1=0 \\ (y-1)^3-(y-1)(y+1)^2-(y+1)^3=0 \\ y^3+7y^2-y+1=0

So, y 3 + 7 y 2 y + 1 = 0 y^3+7y^2-y+1=0 has 1 + α 1 α , 1 + β 1 β \frac{1+\alpha}{1-\alpha},\frac{1+\beta}{1-\beta} and 1 + γ 1 γ \frac{1+\gamma}{1-\gamma} as its roots.

Therefore, to find sum of second power of roots, we use Newton's sum method and our answer comes as 51 \boxed{51} .

Great solution, I learned a new way to manipulate such questions from it.

Akshay Yadav - 5 years ago

Could also solve this! Disturbing coefficients

Puneet Pinku - 5 years ago

Try posting a solution to this problem

Puneet Pinku - 5 years ago
Akshay Yadav
May 16, 2016

Nice question Akshat! It requires witty substitution of variables. Firstly, as α \alpha , β \beta and γ \gamma are roots of the equation x 3 x 1 = 0 x^3-x-1=0 , they must satisfy the given equation also.

Placing value of α \alpha (similar way for other variables),

α 3 α 1 = 0 \alpha^3-\alpha-1=0

α + 1 = α 3 \alpha+1=\alpha^3

And also,

α ( α 2 1 ) 1 = 0 \alpha(\alpha^2-1)-1=0

( α + 1 ) ( α 1 ) = 1 α (\alpha+1)(\alpha-1)=\frac{1}{\alpha}

α 1 = 1 α 4 \alpha-1=\frac{1}{\alpha^4}

Hence the question can be reframed as,

α , β , γ ( 1 + α 1 α ) 2 = α , β , γ ( α + 1 α 1 ) 2 = ( α + 1 α 1 ) 2 + ( β + 1 β 1 ) 2 + ( γ + 1 γ 1 ) 2 = ( α 3 1 / α 4 ) 2 + ( β 3 1 / β 4 ) 2 + ( γ 3 1 / γ 4 ) 2 \displaystyle \sum_{\alpha,\beta,\gamma} \left( \frac{1+\alpha}{1-\alpha}\right)^2= \displaystyle \sum_{\alpha,\beta,\gamma} \left( \frac{\alpha+1}{\alpha-1}\right)^2=\left( \frac{\alpha+1}{\alpha-1}\right)^2+\left( \frac{\beta+1}{\beta-1}\right)^2+\left( \frac{\gamma+1}{\gamma-1}\right)^2=\left(\frac{\alpha^3}{1/\alpha^4}\right)^2+\left(\frac{\beta^3}{1/\beta^4}\right)^2+\left(\frac{\gamma^3}{1/\gamma^4}\right)^2

= α 14 + β 14 + γ 14 =\alpha^{14}+\beta^{14}+\gamma^{14}

This required sum can be calculated by Newton's sum method .

After tedious calculations you get,

α 14 + β 14 + γ 14 = 51 \alpha^{14}+\beta^{14}+\gamma^{14}=\boxed{51}

Well! There is actually no need of doing so much calculations! Check my solution.

Akshat Sharda - 5 years, 1 month ago

No need for that . Its just (sum)^2-2*(sum taken two at a time )ie , 7 *7+2 *1=51

Parth Chopra - 5 years ago
Mark Hennings
May 16, 2016

Since ( 1 x ) ( 1 + 2 x + 2 x 2 ) + x + 1 = 2 ( 1 + x x 3 ) (1-x)(1+2x+2x^2) + x+1 = 2(1+x-x^3) , we have 1 + α 1 α = ( 1 + 2 α + 2 α 2 ) 1 + β 1 β = ( 1 + 2 β + 2 β 2 ) 1 + γ 1 γ = ( 1 + 2 γ + 2 γ 2 ) \tfrac{1+\alpha}{1-\alpha} \,=\, -(1+2\alpha+2\alpha^2) \qquad \tfrac{1+\beta}{1-\beta} \,=\, -(1+2\beta+2\beta^2) \qquad \tfrac{1+\gamma}{1-\gamma} \,=\, -(1+2\gamma+2\gamma^2) and so α ( 1 + α 1 α ) 2 = α ( 1 + 2 α + 2 α 2 ) 2 = S 0 + 4 S 1 + 8 S 2 + 8 S 3 + 4 S 4 \sum_\alpha \left(\tfrac{1+\alpha}{1-\alpha}\right)^2 \; = \; \sum_\alpha (1 + 2\alpha+2\alpha^2)^2 \; =\; S_0 + 4S_1 + 8S_2 + 8S_3 + 4S_4 where S n = α n + β n + γ n S_n = \alpha^n + \beta^n + \gamma^n . Using Newton's formulae, the answer is 3 + 0 + 16 + 24 + 8 = 51 3+0+16+24+8 = \boxed{51} .

Alternatively, the substitution x = y 1 y + 1 x = \frac{\sqrt{y}-1}{\sqrt{y}+1} gives the cubic y 3 51 y 2 13 y 1 = 0 y^3 - 51y^2 - 13y - 1 = 0 as the equation with roots ( 1 + α 1 α ) 2 \left(\frac{1+\alpha}{1-\alpha}\right)^2 , ( 1 + β 1 β ) 2 \left(\frac{1+\beta}{1-\beta}\right)^2 and ( 1 + γ 1 γ ) 2 \left(\frac{1+\gamma}{1-\gamma}\right)^2 , again yielding 51 51 as the answer.

Hung Woei Neoh
May 16, 2016

For variety, here's one more solution:

n = { α , β , γ } ( 1 + n 1 n ) 2 = n = { α , β , γ } ( n + 1 n 1 ) 2 = ( α + 1 α 1 ) 2 + ( β + 1 β 1 ) 2 + ( γ + 1 γ 1 ) 2 \displaystyle \sum_{n=\{\alpha,\beta,\gamma\}}\left(\dfrac{1+n}{1-n}\right)^2\\ =\displaystyle \sum_{n=\{\alpha,\beta,\gamma\}}\left(\dfrac{n+1}{n-1}\right)^2\\ =\left(\dfrac{\alpha+1}{\alpha-1}\right)^2 + \left(\dfrac{\beta+1}{\beta-1}\right)^2 + \left(\dfrac{\gamma+1}{\gamma-1}\right)^2

From Vieta's formula, we know that

α + β + γ = 0 α β + α γ + β γ = 1 α β γ = 1 \alpha + \beta + \gamma = 0\\ \alpha\beta + \alpha\gamma + \beta\gamma = -1\\ \alpha\beta\gamma = 1

Now, to simplify our calculations, we substitute α = a + 1 \alpha = a + 1 , β = b + 1 \beta = b+1 and γ = c + 1 \gamma = c+1 into the expression and the equations

The expression becomes:

( a + 2 a ) 2 + ( b + 2 b ) 2 + ( c + 2 c ) 2 = a 2 + 4 a + 4 a 2 + b 2 + 4 b + 4 b 2 + c 2 + 4 c + 4 c 2 = b 2 c 2 ( a 2 + 4 a + 4 ) + a 2 c 2 ( b 2 + 4 b + 4 ) + a 2 b 2 ( c 2 + 4 c + 4 ) a 2 b 2 c 2 = 3 a 2 b 2 c 2 + 4 a b 2 c 2 + 4 a 2 b c 2 + 4 a 2 b 2 c + 4 a 2 b 2 + 4 a 2 c 2 + 4 b 2 c 2 a 2 b 2 c 2 = 3 ( a b c ) 2 + 4 a b c ( a b + a c + b c ) + 4 ( a 2 b 2 + a 2 c 2 + b 2 c 2 ) ( a b c ) 2 \left(\dfrac{a+2}{a}\right)^2 + \left(\dfrac{b+2}{b}\right)^2 + \left(\dfrac{c+2}{c}\right)^2\\ =\dfrac{a^2+4a+4}{a^2} + \dfrac{b^2+4b+4}{b^2} + \dfrac{c^2 + 4c +4}{c^2}\\ =\dfrac{b^2c^2(a^2+4a+4) + a^2c^2(b^2 + 4b + 4) + a^2b^2(c^2+4c+4)}{a^2b^2c^2}\\ =\dfrac{3a^2b^2c^2 + 4ab^2c^2 + 4a^2bc^2 + 4a^2b^2c + 4a^2b^2 + 4a^2c^2 + 4b^2c^2}{a^2b^2c^2}\\ =\dfrac{3(abc)^2 + 4abc(ab+ac+bc) + 4(a^2b^2+a^2c^2+b^2c^2)}{(abc)^2}

The equations become (simplify yourself, I'm too lazy to type out all the steps):

a + 1 + b + 1 + c + 1 = 0 a + b + c = 3 ( a + 1 ) ( b + 1 ) + ( a + 1 ) ( c + 1 ) + ( b + 1 ) ( c + 1 ) = 1 a b + a c + b c = 2 ( a + 1 ) ( b + 1 ) ( c + 1 ) = 1 a b c = 1 a + 1 + b + 1 + c + 1 = 0 \implies a+b+c = -3\\ (a+1)(b+1) + (a+1)(c+1) + (b+1)(c+1) = -1 \implies ab+ac+bc = 2\\ (a+1)(b+1)(c+1) = 1 \implies abc=1

As an additional step, calculate the value of a 2 b 2 + a 2 c 2 + b 2 c 2 a^2b^2 + a^2c^2 + b^2c^2 :

( a b + a c + b c ) 2 = a 2 b 2 + a 2 c 2 + b 2 c 2 + 2 ( a 2 b c + a b 2 c + a b c 2 ) a 2 b 2 + a 2 c 2 + b 2 c 2 = ( a b + a c + b c ) 2 2 a b c ( a + b + c ) = 2 2 2 ( 1 ) ( 3 ) = 10 (ab+ac+bc)^2 = a^2b^2 + a^2c^2 + b^2c^2 + 2(a^2bc + ab^2c + abc^2)\\ a^2b^2 + a^2c^2 + b^2c^2 = (ab+ac+bc)^2 - 2abc(a+b+c) = 2^2 - 2(1)(-3) = 10

Substitute all the values into the expression:

3 ( a b c ) 2 + 4 a b c ( a b + a c + b c ) + 4 ( a 2 b 2 + a 2 c 2 + b 2 c 2 ) ( a b c ) 2 = 3 ( 1 ) 2 + 4 ( 1 ) ( 2 ) + 4 ( 10 ) 1 2 = 3 + 8 + 40 = 51 \dfrac{3(abc)^2 + 4abc(ab+ac+bc) + 4(a^2b^2+a^2c^2+b^2c^2)}{(abc)^2}\\ =\dfrac{3(1)^2 + 4(1)(2) + 4(10)}{1^2}\\ =3 + 8 + 40\\ =\boxed{51}

Exact method.

Sal Gard - 5 years ago

Can you please post a solution to this question? Disturbing coefficients

Puneet Pinku - 5 years ago
Rishi Sharma
May 16, 2016

Relevant wiki: Newton's Identities

F o r t h o s e w h o d o n t k n o w n e w t o n s u m s ( a s i t i s n o t a p a r t o f J E E s y l l a b u s ) F i r s t n o t i c e t h a t w e c a n w r i t e α + 1 α 1 a s 1 + 2 α 1 s o t h e r e q u i r e d s u m b e c o m e s α , β , γ ( 1 + 2 α 1 ) 2 = 3 + 4 ( 1 ( α 1 ) 2 ) + 4 ( 1 ( α 1 ) ) N o w , x 3 x 2 1 = ( x α ) ( x β ) ( x γ ) t a k i n g l o g o n b o t h s i d e s a n d d i f f e r e n t i a t i n g 3 x 2 1 1 + x 2 x 3 = 1 ( α x ) P u t t i n g x = 1 w e g e t 1 α 1 = 2 N o w i n t h e o r i g i n a l e q u a t i o n d o i n g t h e t r a n s f o r a t i o n s x x + 1 a n d a f t e r t h a t x 1 x x 3 + 2 x 2 + 3 x + 1 = ( x + 1 α 1 ) n o w l e t a = 1 α 1 , b = 1 β 1 , c = 1 γ 1 1 ( α 1 ) 2 = a 2 w h i c h a f t e r c a l c u l a t i n g u s i n g V i e t a s w e g e t 1 ( α 1 ) 2 = a 2 = 10 h e n c e o u r o r i g i n a l s u m i s 4 × 10 + 4 × 2 + 3 = 40 + 8 + 3 = 51 For\quad those\quad who\quad don't\quad know\quad newton\quad sums(as\quad it\quad is\quad not\quad a\quad part\quad of\quad JEE\quad syllabus)\\ First\quad notice\quad that\quad we\quad can\quad write\\ \frac { \alpha +1 }{ \alpha -1 } \quad as\quad 1+\frac { 2 }{ \alpha -1 } \\ so\quad the\quad required\quad sum\quad becomes\\ \sum _{ \alpha ,\beta ,\gamma }^{ }{ { \left( 1+\frac { 2 }{ \alpha-1 } \right) }^{ 2 } } =3+4\left( \sum { \frac { 1 }{ { (\alpha -1) }^{ 2 } } } \right) +4\left( \sum { \frac { 1 }{ (\alpha -1) } } \right) \\ Now,\\ { x }^{ 3 }-{ x }^{ 2 }-1=(x-\alpha )(x-\beta )(x-\gamma )\\ taking\quad log\quad on\quad both\quad sides\quad and\quad differentiating\\ \frac { 3{ x }^{ 2 }-1 }{ 1+{ x }^{ 2 }-{ x }^{ 3 } } =\sum { \frac { 1 }{ (\alpha -x) } } \\ Putting\quad x=1\quad we\quad get\quad \\ \sum { \frac { 1 }{ \alpha -1 } } =2\\ Now\quad in\quad the\quad original\quad equation\quad doing\quad the\quad transforations\quad x\rightarrow x+1\quad and\quad after\quad that\quad x\rightarrow \frac { 1 }{ x } \\ -{ x }^{ 3 }+2{ x }^{ 2 }+3x+1=\prod { \left( x+\frac { 1 }{ \alpha -1 } \right) } \\ now\quad let\quad a=\frac { 1 }{ \alpha -1 } ,\quad b=\frac { 1 }{ \beta -1 } ,\quad c=\frac { 1 }{ \gamma -1 } \\ \sum { \frac { 1 }{ { \left( \alpha -1 \right) }^{ 2 } } } =\sum { { a }^{ 2 } } \\ which\quad after\quad calculating\quad using\quad Vieta's\quad we\quad get\\ \sum { \frac { 1 }{ { \left( \alpha -1 \right) }^{ 2 } } } =\sum { { a }^{ 2 } } =10\\ hence\quad our\quad original\quad sum\quad is\\ 4\times 10+4\times 2+3=40+8+3=51

Moderator note:

Nice approach demonstrating how to find the sums of those expressions.

It's generally better to stick to just one approach throughout the solution. IE To find 1 ( α 1 ) 2 \sum \frac{1}{(\alpha-1)^2 } , we can just differentiate 1 α x \sum \frac{1}{ \alpha - x } and substitue x = 1 x =1 as we did earlier.

No subjective in IIT so we can apply Newton's sum method @Rishi Sharma

Mann Shah - 5 years ago

Log in to reply

I know but many students preparing for iit are unaware of newtons sum method like me so I provided an alternative solution @ Mann Shah

Rishi Sharma - 5 years ago

One can always resort to Polynomial Transformation \text{Polynomial Transformation} for solving this kind of problems. But, your solution is way more elegant than that of others as it illustrates a careful observation can make a question really easy. Keep it up :).

Aditya Sky - 5 years ago
Prakhar Bindal
May 16, 2016

Replace x by a-1/a+1 where a = square root of x to get the equation whose roots are (1+x/1-x)^2 . Simplify and see sum of roots

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...