Let a and b be real positive numbers such that a b = e . What is the value of the integral below?
∫ 0 ∞ x e − a x − e − b x d x
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
I personally used double feynman differentiation under the integral sign
This is how I did it, although I am not so sure if it is rigorous enough...
F ( a , b ) = ∫ 0 ∞ x e − a x − e − b x d x ∂ a ∂ F = ∫ 0 ∞ ∂ a ∂ ( x e − a x − e − b x ) d x = ∫ 0 ∞ − e − a x d x = [ a e − a x ] 0 ∞ = − a 1 ∂ b ∂ F = ∫ 0 ∞ ∂ b ∂ ( x e − a x − e − b x ) d x = ∫ 0 ∞ e − b x d x = [ b − e − b x ] 0 ∞ = b 1
Integrating, F ( a , b ) = ln b − ln a = ln a b = 1
This reminds me of Frullani's integral, henceforth the result.
Assuming that ( x ∣ a ) ∈ C ∧ ℜ ( a ) > 0 , ∫ x e − a x − e e ( − a ) x d x ⟹ E x p I n t e g r a l E i [ − a x ] − E x p I n t e g r a l E i [ − a E x ] .
( x ∣ a ) ∈ C ∧ ℜ ( a ) > 0 , x → ∞ lim ( Ei ( − a x ) − Ei ( − a e x ) ) ⟹ 0
( x ∣ a ) ∈ C ∧ ℜ ( a ) > 0 , x → 0 lim ( Ei ( − a x ) − Ei ( − a e x ) ) ⟹ − 1
0 − ( − 1 ) ⟹ 1
Problem Loading...
Note Loading...
Set Loading...
∫ 0 ∞ x e − a x − e − b x d x = ∫ 0 ∞ ∫ a b e − x y d y d x = ∫ a b ∫ 0 ∞ e − x y d x d y = ∫ a b y − 1 d y = ln ( a b ) = 1 A standard combination of Tonelli's and Fubini's Theorems tells us that the reversal of order of iterated integration is valid.