Try multivariable calculus

Calculus Level 4

Let a a and b b be real positive numbers such that b a = e \dfrac ba = e . What is the value of the integral below?

0 e a x e b x x d x \int_0^{\infty} \frac{e^{-ax} - e^{-bx}}{x} dx

0 0 e e 1 1 ln ( e 1 ) \ln(e - 1)

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

6 solutions

Mark Hennings
Feb 26, 2019

0 e a x e b x x d x = 0 a b e x y d y d x = a b 0 e x y d x d y = a b y 1 d y = ln ( b a ) = 1 \int_0^\infty \frac{e^{-ax} - e^{-bx}}{x}\,dx \; = \; \int_0^\infty \int_a^b e^{-xy}\,dy \,dx \; = \; \int_a^b \int_0^\infty e^{-xy}\,dx\,dy \; = \; \int_a^b y^{-1}\,dy \; = \; \ln(\tfrac{b}{a}) = \boxed{1} A standard combination of Tonelli's and Fubini's Theorems tells us that the reversal of order of iterated integration is valid.

Aaghaz Mahajan
Feb 26, 2019

Also known as a Frullani Integral ........

I personally used double feynman differentiation under the integral sign

Gabriel Chacón
Mar 8, 2019

This is how I did it, although I am not so sure if it is rigorous enough...

F ( a , b ) = 0 e a x e b x x d x F a = 0 a ( e a x e b x x ) d x = 0 e a x d x = [ e a x a ] 0 = 1 a F b = 0 b ( e a x e b x x ) d x = 0 e b x d x = [ e b x b ] 0 = 1 b F(a,b)=\displaystyle \int_{0}^{\infty} \dfrac{e^{-ax}-e^{-bx}}{x} \, dx \\ \dfrac{\partial F}{\partial a}=\displaystyle \int_{0}^{\infty} \dfrac{\partial }{\partial a} \left( \dfrac{e^{-ax}-e^{-bx}}{x} \right) \, dx =\displaystyle \int_{0}^{\infty} -e^{-ax} \, dx=\left[ \dfrac{e^{-ax}}{a} \right]_0^{\infty}= -\dfrac{1}{a} \\ \dfrac{\partial F}{\partial b}=\displaystyle \int_{0}^{\infty} \dfrac{\partial }{\partial b} \left( \dfrac{e^{-ax}-e^{-bx}}{x} \right) \, dx =\displaystyle \int_{0}^{\infty} e^{-bx} \, dx=\left[ \dfrac{-e^{-bx}}{b} \right]_0^{\infty}= \dfrac{1}{b} \\

Integrating, F ( a , b ) = ln b ln a = ln b a = 1 F(a,b)=\ln b - \ln a=\ln \frac{b}{a}=\boxed{1}

Rohan Shinde
Mar 8, 2019

This reminds me of Frullani's integral, henceforth the result.

Assuming that ( x a ) C ( a ) > 0 , e a x e e ( a ) x x d x E x p I n t e g r a l E i [ a x ] E x p I n t e g r a l E i [ a E x ] (x|a)\in \mathbb{C}\land \Re(a)>0,\int \frac{e^{-a x}-e^{e (-a) x}}{x} \, dx \Longrightarrow ExpIntegralEi[-a x] - ExpIntegralEi[-a E x] .

( x a ) C ( a ) > 0 , lim x ( Ei ( a x ) Ei ( a e x ) ) 0 (x|a)\in \mathbb{C}\land \Re(a)>0,\underset{x\to \infty }{\text{lim}}(\text{Ei}(-a\ x)-\text{Ei}(-a\ e\ x)) \Longrightarrow 0

( x a ) C ( a ) > 0 , lim x 0 ( Ei ( a x ) Ei ( a e x ) ) 1 (x|a)\in \mathbb{C}\land \Re(a)>0,\underset{x\to 0}{\text{lim}}(\text{Ei}(-a\ x)-\text{Ei}(-a\ e\ x)) \Longrightarrow -1

0 ( 1 ) 1 0-(-1) \Longrightarrow 1

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...