Try Newton sums, maybe!

Algebra Level 5

{ x 1 2 + x 2 2 = 5 3 ( x 1 5 + x 2 5 ) = 11 ( x 1 3 + x 2 3 ) \large{\begin{cases} x_1^2+x_2^2=5 \\ 3(x_1^5+x_2^5)=11(x_1^3+x_2^3) \end{cases}}

Let F ( x ) F(x) be a monic quadratic polynomial with real coefficients with real roots x 1 x_1 and x 2 x_2 that satisfy the system of equations above. If the product of all distinct value of F ( 3 ) F(3) is ψ \psi , find ψ 4 \sqrt{\psi - 4} .


The answer is 16.00.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Rishabh Jain
May 17, 2016

Manipulating second eqn:

3 ( ( x 1 3 + x 2 3 ) ( x 1 2 + x 2 2 ) x 1 2 x 2 2 ( x 1 + x 2 ) ) = 11 ( x 1 3 + x 2 3 ) 3((x_1^3+x_2^3)(x_1^2+x_2^2)-x_1^2x_2^2(x_1+x_2))=11(x_1^3+x_2^3) Using x 1 2 + x 2 2 = 5 \small{\color{teal}{x_1^2+x_2^2=5}} 4 ( x 1 3 + x 2 3 ) 3 x 1 2 x 2 2 ( x 1 + x 2 ) = 0 4(x_1^3+x_2^3)-3x_1^2x_2^2(x_1+x_2)=0

Using x 1 3 + x 2 3 = ( x 1 + x 2 ) ( x 1 2 + x 2 2 5 x 1 x 2 ) \color{teal}{\small{x_1^3+x_2^3=(x_1+x_2)(\underbrace{x_1^2+x_2^2}_5-x_1x_2)}}

4 ( ( x 1 + x 2 ) ( 5 x 1 x 2 ) 3 x 1 2 x 2 2 ( x 1 + x 2 ) = 0 4((\color{#D61F06}{x_1+x_2})(5-x_1x_2)-3x_1^2x_2^2(\color{#D61F06}{x_1+x_2})=0

( x 1 + x 2 ) ( 20 4 x 1 x 2 3 x 1 2 x 2 2 ) = 0 \implies ( \color{#D61F06}{x_1+x_2})(20-4x_1x_2-3x_1^2x_2^2)=0 Two case arise:-

x 1 + x 2 = 0 \large{\star\star\star}~~~~~x_1+x_2=0 Using this and x 1 2 + x 2 2 = 5 x_1^2+x_2^2=5 we can find: F ( x ) : x 2 5 2 \large\color{#3D99F6}{F(x):x^2-\dfrac{5}{2}}


20 4 x 1 x 2 3 x 1 2 x 2 2 = 0 \large{\star\star\star}~~~20-4x_1x_2-3x_1^2x_2^2=0 This is a quadratic in x 1 x 2 x_1x_2 - solve it to get x 1 x 2 = 2 , 10 3 x_1x_2=2,\dfrac{-10}{3}

Now, x 1 + x 2 = ± x 1 2 + x 2 5 + 2 x 1 x 2 2 = ± 3 x_1+x_2=\pm\sqrt{\underbrace{x_1^2+x^2}_5+2\underbrace{x_1x_2}_2}=\pm 3

(Here x 1 x 2 = 10 3 x_1x_2=\dfrac{-10}{3} is rejected because x 1 + x 2 x_1+x_2 is taking imaginary values for that. Hence : F ( x ) : x 2 ± 3 x + 2 = 0 \large \color{#3D99F6}{F(x):x^2\pm 3x+2=0}


Hence there are 3 3 possible values of F ( x ) F(x) . Direct substitution of x = 3 x=3 to find F ( 3 ) F(3) and whose product is:

13 2 × 20 × 2 = 260 \large \dfrac{13}{2}\times 20\times 2=260

256 = 16 \huge\therefore\sqrt{256}=\boxed{\color{#D61F06}{16}}

Nice one! (+1)

Samara Simha Reddy - 5 years ago

Log in to reply

Thanks.... ¨ \ddot\smile

Rishabh Jain - 5 years ago

Nice solution (+1). My solution is way more lengthy and computational than yours. By the way, where did you get this question ?

Aditya Sky - 5 years ago

Log in to reply

I found this question on Toppr.com abt 1 year ago.... I saw this question in my rough copy coincidently and found it worth sharing on brilliant.... However my solution is original... :-) .... BTW Thanks..

Rishabh Jain - 5 years ago
Hung Woei Neoh
May 17, 2016

Let the polynomial be F ( x ) = x 2 a x + b F(x) = x^2 - ax + b . To make it easy for me to type, let x 1 = p , x 2 = q x_1 = p,\;x_2 = q

p + q = a , p q = b p+ q = a,\;pq = b

Using Newton's sums:

p 2 + q 2 = ( p + q ) 2 2 p q 5 = a 2 2 b p^2 + q^2 = (p+q)^2 - 2pq\\ 5=a^2 - 2b

p 3 + q 3 = ( p + q ) ( p 2 + q 2 ) p q ( p + q ) p 3 + q 3 = 5 a a b p^3 + q^3 = (p+q)(p^2 + q^2) - pq(p+q)\\ p^3 + q^3 = 5a - ab

p 4 + q 4 = ( p + q ) ( p 3 + q 3 ) p q ( p 2 + q 2 ) p 4 + q 4 = a ( 5 a a b ) b ( 5 ) = 5 a 2 a 2 b 5 b p^4 + q^4 = (p+q)(p^3 + q^3) - pq(p^2 + q^2)\\ p^4 + q^4 = a(5a -ab) - b(5) = 5a^2 - a^2b - 5b

p 5 + q 5 = ( p + q ) ( p 4 + q 4 ) p q ( p 3 + q 3 ) p 5 + q 5 = a ( 5 a 2 a 2 b 5 b ) b ( 5 a a b ) = 5 a 3 a 3 b 10 a b + a b 2 p^5 + q^5 = (p+q)(p^4 + q^4) - pq(p^3 + q^3)\\ p^5 + q^5 = a(5a^2 - a^2b - 5b) - b(5a-ab) = 5a^3 - a^3b -10ab + ab^2

Given the 2 conditions:

5 = a 2 2 b b = a 2 5 2 5=a^2 - 2b \implies b=\dfrac{a^2-5}{2} \quad Eq.(1)

3 ( p 5 + q 5 ) = 11 ( p 3 + q 3 ) 3 ( 5 a 3 a 3 b 10 a b + a b 2 ) = 11 ( 5 a a b ) 15 a 3 3 a 3 b 30 a b + 3 a b 2 = 55 a 11 a b 15 a 3 3 a 3 b 19 a b + 3 a b 2 55 a = 0 3(p^5 + q^5) = 11 (p^3 + q^3)\\ 3 (5a^3 - a^3b -10ab + ab^2)= 11(5a - ab)\\ 15a^3 - 3a^3b - 30ab + 3ab^2 = 55a - 11ab\\ 15a^3 - 3a^3b - 19ab + 3ab^2 - 55a = 0

Substitute Eq.(1) in here:

15 a 3 3 a 3 ( a 2 5 2 ) 19 a ( a 2 5 2 ) + 3 a ( a 2 5 2 ) 2 55 a = 0 60 a 3 6 a 5 + 30 a 3 38 a 3 + 190 a + 3 a ( a 4 10 a 2 + 25 ) 220 a = 0 3 a 5 + 22 a 3 + 45 a = 0 3 a 5 22 a 3 45 a = 0 a ( 3 a 4 22 a 2 45 ) = 0 a ( 3 a 2 + 5 ) ( a 2 9 ) = 0 a ( 3 a 2 + 5 ) ( a 3 ) ( a + 3 ) = 0 a = 0 , 3 , 3 a 2 = 5 3 15a^3 - 3a^3\left(\dfrac{a^2-5}{2}\right) -19a\left(\dfrac{a^2-5}{2}\right) + 3a\left(\dfrac{a^2-5}{2}\right)^2 - 55a = 0\\ 60a^3 - 6a^5 + 30a^3 - 38a^3 + 190a + 3a(a^4 - 10a^2 + 25) - 220a =0\\ -3a^5 + 22a^3 + 45a = 0\\ 3a^5 - 22a^3 -45a = 0\\ a(3a^4 - 22a^2 - 45) = 0\\ a(3a^2 + 5)(a^2 - 9) = 0\\ a(3a^2 + 5)(a-3)(a+3) = 0\\ a=0,\;3,\;-3 \quad a^2 = -\dfrac{5}{3}

The last factor does not give real values for a a , therefore we have 3 different F ( x ) F(x)

a = 0 , b = 0 2 5 2 = 5 2 F ( x ) = x 2 5 2 F ( 3 ) = 13 2 a=0, \;b=\dfrac{0^2-5}{2} = -\dfrac{5}{2}\\ F(x) = x^2 - \dfrac{5}{2} \implies F(3) = \dfrac{13}{2}

a = 3 , b = 3 2 5 2 = 2 F ( x ) = x 2 3 x + 2 F ( 3 ) = 2 a=3, \;b=\dfrac{3^2-5}{2} = 2\\ F(x) = x^2 - 3x + 2 \implies F(3) = 2

a = 3 , b = ( 3 ) 2 5 2 = 2 F ( x ) = x 2 + 3 x + 2 F ( 3 ) = 20 a=-3, \;b=\dfrac{(-3)^2-5}{2} = 2\\ F(x) = x^2 + 3x + 2 \implies F(3) = 20

ψ = 13 2 × 2 × 20 = 260 ψ 4 = 260 4 = 256 = 16 \psi = \dfrac{13}{2} \times 2 \times 20 = 260\\ \sqrt{\psi -4} = \sqrt{260 -4} = \sqrt{256} = \boxed{16}

Nice..... Thanks... (+1)

Rishabh Jain - 5 years ago

Log in to reply

Your solution is quicker, but anyway, thanks ¨ \ddot\smile

Hung Woei Neoh - 5 years ago

Same solution (+1).

Aditya Sky - 5 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...