Try solving this with pure Euclid!

Geometry Level 4

Consider isosceles A B C \triangle ABC with A = 2 0 \measuredangle A=20^{\circ} and A B = A C AB=AC . Now consider point D D on A C AC such that A D = B C AD=BC . What is the measure of B D C \angle BDC ?

(Please don't use trigonometry!)


The answer is 30.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

7 solutions

J Dim
Apr 7, 2018

Consider point E E such that \triangle A D E ADE is an equilateral triangle and D E DE does not intersect with A B AB . Then \triangle A B C ABC = = \triangle B E A BEA ( 1 ) (1) . From ( 1 ) (1) we get that \triangle A D B ADB = = \triangle E D B EDB ( 2 ) (2) . From ( 1 ) (1) and ( 2 ) (2) we get that A B D = 1 0 \angle ABD=10^{\circ} . Thus, B D C \angle BDC = = A B D \angle ABD + + B A C \angle BAC = = 1 0 10^{\circ} + + 2 0 20^{\circ} = = 3 0 30^{\circ} .

I did exactly this thing

Srikanth Tupurani - 2 years, 7 months ago

Draw an equilateral triangle inside ABC triangle. BAC=ACI=20, AB=AC, AD=BC=IC => ABD=CAI (s-a-s) => ABD=CAI=10 => BDC=10+20=30

In all Euclidean solutions that are already posted, an equilateral triangle {\color{#3D99F6}{\text{equilateral triangle}}} is always the key. So, here is another one:

Let c c be the circle with center A A and radius A B = R AB=R . A C = A B = R AC=AB=R , hence, C C lies on c c . Consider point E E on c c , such that A B E \triangle {\color{#3D99F6}{ABE}} is equilateral and overlapping A B C \triangle ABC .

B A C = 20 B A E = 60 } C A E = 40 C E = 40 C B E = 20 \left. \begin{matrix} \angle BAC=20{}^\circ \\ \angle BAE=60{}^\circ \\ \end{matrix} \right\}\Rightarrow \angle CAE=40{}^\circ \Rightarrow \overset\frown{CE}=40{}^\circ \Rightarrow \angle CBE=20{}^\circ

Since B C = A D BC=AD , B E = A E BE=AE and C B E = B A D \angle CBE=\angle BAD , C B E = B A D \triangle CBE=\triangle BAD (s-a-s), thus, θ = A B D = B E C ( 1 ) \theta=\angle ABD=\angle BEC \ \ \ \ \ (1)

Alongside, B A C = 20 B C = 20 B E C = 10 ( 1 ) θ = 10 \angle BAC=20{}^\circ \Rightarrow \overset\frown{BC}=20{}^\circ \Rightarrow \angle BEC=10{}^\circ \overset{(1)}{\mathop{\Rightarrow }}\,\theta=10{}^\circ .

Finally, φ = B D C = θ + B A C = 10 + 20 = 30 \varphi =\angle BDC=\theta +\angle BAC=10{}^\circ +20{}^\circ =30{}^\circ .

The answer is 30 \boxed{30} .

Rda .
Jan 28, 2019

W L O G l e t B C = 2. A B = A C = B C c o s 80 D C = A B B C . D B f r o m D C , D B a n d i n c l u d e d a n g l e C w i t h C o s L a w . U s e S i n L a w i n Δ D B C c a l c u l a t e C D B . C D B = a s i n ( B C s i n 80 2 2 + ( 2 c o s 20 ) 2 2 2 2 c o s 20 c o s ( 80 ) ) = 3 0 o . I f S i n a n d C o s L a w s a r e a p a r t o f T r i g . , I w i l l p o s t o t h e r s o l u t i o n s o o n . WLOG~let~BC=2.~~AB=AC=\dfrac{BC}{cos80}\\ DC=AB-BC.~~DB~from~DC,~DB~and~included~angle~C~with~Cos~Law.\\ Use~Sin~Law~in~\Delta~DBC~calculate~\angle~CDB.\\ \therefore~\angle~CDB~=~asin~\left ( \dfrac{BC*sin80} {\sqrt{2^2+(\frac 2 {cos20})^2-2*2*\frac 2 {cos20}*cos(80)}} \right )=~30^o.\\ If ~Sin~and~Cos~Laws~are~a~part~of~Trig.,~I ~will~post~other~ solution~soon.

Not so good. J dim requested not to use trigonmetry.

Mrutyunjaya Choudhury - 3 years, 1 month ago

Firstly, A B C = A C B = 80 ° \angle ABC = \angle ACB = 80°

Now, add a point E E , such that A B C E A D \triangle ABC \cong \triangle EAD and E A D \triangle EAD doesn't overlap A B C \triangle ABC (i.e. make a copy of A B C \triangle ABC and position it so that its base completely overlaps segment A D AD , since A D AD = B C BC ). since A B C + E A B = A B C + E A D + B A C = 180 ° \angle ABC + \angle EAB = \angle ABC + \angle EAD + \angle BAC = 180° , we have that segments B C BC and A E AE are parallel. Now, add another point F F on line B C BC such that A B F E ABFE is a parallelogram. Not only will A B F E ABFE be a parallelogram, but it will be a rhombus as well because A B = A E AB = AE (from congruency).

Now we have lots of segments of same length:

A B = A C = E A = E D = E F = B F AB = AC = EA = ED = EF = BF

Because A B F E ABFE is a rhombus: A E F = A B F = 80 ° \angle AEF = \angle ABF = 80° , so D E F = A E F A E D = 60 ° \angle DEF = \angle AEF - \angle AED\ = 60° . With D E = E F DE = EF and D E F \angle DEF , we find that D E F \triangle DEF is equilateral, so we can add D F DF to the equality above:

A B = A C = E A = E D = E F = B F = D F AB = AC = EA = ED = EF = BF = DF

Now, since B F = D F BF = DF , B D F \triangle BDF is isosceles with B F D = B F E A F E = 100 ° 60 ° = 40 ° \angle BFD = \angle BFE - \angle AFE = 100° - 60° = 40° and D B F = B D F = 70 ° \angle DBF = \angle BDF = 70° .

In the end, we easily find that B D C = 180 ° B C D D B C = 180 ° B C A D B F = 180 ° 80 ° 70 ° = 30 ° \angle BDC = 180° - \angle BCD - \angle DBC = 180° - \angle BCA - \angle DBF = 180° - 80° - 70° = \boxed{30°}

Let A B = A C = 1 AB=AC=1 . By sine law on A B C \triangle ABC ,

B C sin 20 = 1 sin 80 \dfrac{BC}{\sin 20}=\dfrac{1}{\sin 80} \implies B C = sin 20 sin 80 BC=\dfrac{\sin 20}{\sin 80}

By cosine law on A B D \triangle ABD ,

( B D ) 2 = ( sin 20 sin 80 ) 2 + 1 2 2 ( sin 20 sin 80 ) ( 1 ) ( cos 20 ) (BD)^2=\left(\dfrac{\sin 20}{\sin 80}\right)^2+1^2-2\left(\dfrac{\sin 20}{\sin 80}\right)(1)(\cos 20)

B D = ( sin 20 sin 80 ) 2 + 1 2 sin 20 cos 20 sin 80 BD=\sqrt{\left(\dfrac{\sin 20}{\sin 80}\right)^2+1-\dfrac{2 \sin 20 \cos 20}{\sin 80}}

By sine law on B D C \triangle BDC ,

sin B D C B C = sin 80 B D \dfrac{\sin \angle BDC}{BC}=\dfrac{\sin 80}{BD}

sin B D C sin 20 sin 80 = sin 80 ( sin 20 sin 80 ) 2 + 1 2 sin 20 cos 20 sin 80 \dfrac{\sin \angle BDC}{\dfrac{\sin 20}{\sin 80}}=\dfrac{\sin 80}{\sqrt{\left(\dfrac{\sin 20}{\sin 80}\right)^2+1-\dfrac{2 \sin 20 \cos 20}{\sin 80}}}

B D C = 3 0 \angle BDC = \boxed{30^\circ}

The instruction of the problem is not to directly apply any trigonometric formula.

Michael Huang - 3 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...