If a , b , c are distinct and p ( x ) is a polynomial in x which leaves a remainder a , b , c on division by ( x − a ) , ( x − b ) , ( x − c ) respectively.Find the remainder obtained on division of p ( x ) by ( x − a ) ( x − b ) ( x − c )
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Simple standard approach via the Remainder-Factor Theorem.
Best standard solution
Let P ( x ) = Q ( x ) ( x − a ) ( x − b ) ( x − c ) + R ( x )
Since the degree of the divisor is 3 . So, the degree of R ( x ) is 2 .
Let R ( x ) be l x 2 + m x + n .
Now, P ( x ) = Q ( x ) ( x − a ) ( x − b ) ( x − c ) + ( l x 2 + m x + n ) .
Given that
P ( a ) = a ⇒ a = l a 2 + m a + n
P ( b ) = b ⇒ b = l b 2 + m b + n
P ( c ) = c ⇒ c = l c 2 + m l + n
( a − b ) = l a 2 − l b 2 + m a − m b ⇒ ( a − b ) = l ( a + b ) ( a − b ) + m ( a − b )
⇒ l ( a + b ) + m = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Similarly , ( b − c ) = l b 2 − l c 2 + m b − m c ⇒ ( b − c ) = l ( b − c ) ( b + c ) + m ( b − c )
⇒ l ( b + c ) + m = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Similarly, ( a − c ) = l a 2 − l c 2 + m a − m c ⇒ ( a − c ) = l ( a − c ) ( a + c + m ( a − c ) )
⇒ l ( a + c ) + m = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Solving 1 , 2 ,we get,
l ( a + b ) − l ( b + c ) + m − m = 0 .
l a + l b − l b − l c = 0 .
l ( a − c ) = 0 .
But, a = c ⇒ l = 0
Substituting l = 0 in 1 , we get ,
0 ( a + c ) + m = 1 ⇒ m = 1
Substituting l , m in P ( a ) , we get ,
a = 0 ( a 2 ) + 1 ( a ) + n ⇒ n = 0 .
Now, R ( x ) = l x 2 + m x + n = 0 ( x 2 ) + 1 ( x ) + 0 = x
Therefore the remainder is x .
Great work.Upvoted
Problem Loading...
Note Loading...
Set Loading...
Let P ( x ) = Q ( x ) ( x − a ) ( x − b ) ( x − c ) + R ( x )
Since the degree of divisor is 3 . So, the degree of R(x) is atmost 2 .
So, Let R ( x ) = p x 2 + q x + r .
So, P ( a ) = p a 2 + q a + r , P ( b ) = p b 2 + q b + r and P ( c ) = p c 2 + q c + r .
But, P ( a ) = a , P ( b ) = b , P ( c ) = c
So, a = p a 2 + q a + r , b = p b 2 + q b + r and c = p c 2 + q c + r .
It implies that a − b = p ( a 2 − b 2 ) + q ( a − b ) and b − c = p ( b 2 − c 2 ) + q ( b − c )
So, p ( a + b ) + q = 1 and p ( b + c ) + q = 1 .
Subtracting the above equations,
We get p ( a − c ) = 0 . But a = c .
So, p = 0
So, it will imply that q = 1 and r = 0 ( But How? Try yourselves )
So, R ( x ) = x .