Try This

Calculus Level 2

The value of I = 0 π 4 t a n n + 1 x d x + 1 2 0 π 2 t a n n 1 ( x 2 ) d x I\quad =\quad \int _{ 0 }^{ \cfrac { \pi }{ 4 } }{ { tan }^{ n+1 }x\quad dx\quad +\quad \cfrac { 1 }{ 2 } \int _{ 0 }^{ \cfrac { \pi }{ 2 } }{ { tan }^{ n-1 }(\cfrac { x }{ 2 } } )\quad dx } is equal to

n + 2 2 n + 1 \cfrac { n+2 }{ 2n+1 } 1 n \cfrac { 1 }{ n } 2 n 3 3 n 2 \cfrac { 2n-3 }{ 3n-2 } 2 n 1 n \cfrac { 2n-1 }{ n }

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Suyash Mittal
Apr 25, 2014

I = 0 π 4 t a n n + 1 x d x + 1 2 0 π 2 t a n n 1 ( x 2 ) d x I\quad =\quad \int _{ 0 }^{ \cfrac { \pi }{ 4 } }{ { tan }^{ n+1 }x\quad dx\quad +\quad \cfrac { 1 }{ 2 } \int _{ 0 }^{ \cfrac { \pi }{ 2 } }{ { tan }^{ n-1 }(\cfrac { x }{ 2 } } )\quad dx } For second integral substitution x 2 = y \cfrac { x }{ 2 } \quad =\quad y I = 0 π 4 ( t a n n + 1 x + t a n n 1 x ) d x I\quad =\quad \int _{ 0 }^{ \cfrac { \pi }{ 4 } }{ ({ tan }^{ n+1 }x\quad +\quad { tan }^{ n-1 }x)dx } 0 π 4 t a n n 1 x s e c 2 x d x \int _{ 0 }^{ \cfrac { \pi }{ 4 } }{ { tan }^{ n-1 }x\quad *\quad { sec }^{ 2 }x\quad dx } [ t a n n x n ] 0 π 4 = 1 n [\cfrac { { tan }^{ n }x }{ n } \overset { \cfrac { \pi }{ 4 } }{ \underset { 0 }{ ] } } \quad =\quad \cfrac { 1 }{ n }

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...