Substitution Not Required

Calculus Level 4

lim n r = 1 n r n 2 + n + r = ? \displaystyle \lim_{n \to \infty} \sum_{r=1}^{n} \dfrac{r}{n^2 + n + r} = \ ?


Why no one is trying this problem

0 1 1 3 \dfrac{1}{3} 1 2 \dfrac{1}{2}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

If n approach to infinity the denominator will be n 2 n^{2} ,so,it's become the same in all terms.

hence we have

l i m n > Σ r = 1 n r n 2 + n + r = l i m n > Σ r = 1 n r n 2 = n ( n + 1 ) / 2 n 2 = 1 2 lim_{n -> \infty} \Sigma_{r=1}^{n} \frac{r}{n^{2}+n+r}=lim_{n -> \infty} \Sigma_{r=1}^{n} \frac{r}{n^{2}}=\frac{n(n+1)/2}{n^{2}}=\frac{1}{2}

Nice solution :) Also, if you want to format an arrow you write: \rightarrow\ in the brackets, and \displaystyle\sum_{r=1}^{n} produces a sum that looks different

Curtis Clement - 6 years, 2 months ago

This solution seems incorrect to me. I have seen this question elsewhere and the solution involves the use of sandwich theorem (which is quite wonderful).

Keshav Tiwari - 5 years, 2 months ago

Log in to reply

I guess you mean this solution.

Let n and r be positive integers. Then

n + r > 0 \displaystyle n+r>0

n 2 + n + r > n 2 \displaystyle { n }^{ 2 }+n+r>{ n }^{ 2 }

r n 2 + n + r < r n 2 \displaystyle \frac { r }{ { n }^{ 2 }+n+r } <\frac { r }{ { n }^{ 2 } }

Also,

r < n + 1 \displaystyle r<n+1

n 2 + n + r < n 2 + 2 n + 1 = ( n + 1 ) 2 \displaystyle { n }^{ 2 }+n+r<{ n }^{ 2 }+2n+1={ (n+1) }^{ 2 }

r ( n + 1 ) 2 < r n 2 + n + r \displaystyle \frac { r }{ { (n+1) }^{ 2 } } <\frac { r }{ { n }^{ 2 }+n+r }

r ( n + 1 ) 2 < r n 2 + n + r < r n 2 \displaystyle \frac { r }{ { (n+1) }^{ 2 } } <\frac { r }{ { n }^{ 2 }+n+r } <\frac { r }{ { n }^{ 2 } }

Hence,

r = 1 n r ( n + 1 ) 2 < r = 1 n r n 2 + n + r < r = 1 n r n 2 \displaystyle \sum _{ r=1 }^{ n }{ \frac { r }{ { (n+1) }^{ 2 } } } <\sum _{ r=1 }^{ n }{ \frac { r }{ { n }^{ 2 }+n+r } } <\sum _{ r=1 }^{ n }{ \frac { r }{ { n }^{ 2 } } }

n 2 ( n + 1 ) < S < n + 1 2 n \displaystyle \frac { n }{ { 2(n+1) } } <S<\frac { n+1 }{ 2{ n } }

And so, at the limit

1 2 < S < 1 2 + \displaystyle { \frac { 1 }{ 2 } }^{ - }<S<{ \frac { 1 }{ 2 } }^{ + }

Or S = 1 2 \displaystyle S={ \frac { 1 }{ 2 } }

คลุง แจ็ค - 5 years, 1 month ago

Log in to reply

Yes. Pretty much it. : ) :)

Keshav Tiwari - 5 years, 1 month ago
Leonel Castillo
Jun 10, 2018

r = 1 n r n 2 + n + r = r = 1 n 1 n 2 r + n r + 1 = r = 1 n 1 n + 1 r + 1 n 1 n \sum_{r=1}^n \frac{r}{n^2 + n + r} = \sum_{r=1}^n \frac{1}{\frac{n^2}{r} + \frac{n}{r} + 1} = \sum_{r=1}^n \frac{1}{\frac{n+1}{r} + \frac{1}{n}} \frac{1}{n}

0 1 x d x = lim n r = 1 n r n + 2 1 n lim n r = 1 n 1 n + 1 r + 1 n 1 n lim n r = 1 n 1 n + 1 r 1 n = 0 1 x d x \int_0^1 x dx = \lim_{n \to \infty} \sum_{r=1}^n \frac{r}{n+2} \frac{1}{n} \leq \lim_{n \to \infty} \sum_{r=1}^n \frac{1}{\frac{n+1}{r} + \frac{1}{n}} \frac{1}{n} \leq \lim_{n \to \infty} \sum_{r=1}^n \frac{1}{\frac{n+1}{r}} \frac{1}{n} = \int_0^1 x dx

0 1 x d x = 1 2 \int_0^1 x dx = \frac{1}{2}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...