x
+
y
=
1
6
x
−
y
=
1
0
Find the value of
x
2
+
y
2
.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Add the given equations to get:-
2
x
=
2
6
x
=
1
3
So,
1
3
+
y
=
1
6
y
=
3
So,
x
2
+
y
2
=
1
3
2
+
3
2
=
1
6
9
+
9
=
1
7
8
.
Typo: 2 x = 2 6
adding the two equations we have 2 x = 2 6 and x = 1 3 while subtracting the second from the first we have 2 y = 6 or y = 3 . x 2 + y 2 = 1 6 9 + 9 = 1 7 8 .
((X+Y)-(X-Y))/2 or (16-10)/2=3, so y=3, therefore, x=13 and x²+y²=13²+3²=169+9=178
(x+y)^2=16^2=256 x^2+2xy+y^2=256 (x-y)^2=10^2=100 x^2-2xy+y^2=100 (x+y)^2+(x-y)^2=2x^2+2y^2=356 x^2+y^2=356/2=178
x+y=16 x-y=10 So, x+y+x-y=16+10 So, 2x=26, x+13 So, y=16-13=3
Ans 13^2+3^2 =169+9 =178
The value of x is 13 and value of y is 3.Therefore,13^2+3^2=178.
add the 2 eqns to get x=13 put x=13 in any one eqn n get y=3 x x=169 y y=9 169+9=178
Problem Loading...
Note Loading...
Set Loading...
G i v e n t h a t x + y = 1 6 . . . . . . . . ( i ) x − y = 1 0 . . . . . . . . . ( i i ) A d d i n g ( i ) & ( i i ) , w e h a v e 2 x = 2 6 o r x = 1 3 P u t t i n g x = 1 3 i n ( i ) , w e h a v e y = 3 x y = ( 1 3 ) ( 3 ) = 3 9 N o w f i n d x 2 + y 2 x 2 + y 2 = x 2 + y 2 + 2 x y − 2 x y = ( x + y ) 2 − 2 x y = ( 1 6 ) 2 − 2 ( 3 9 ) = 2 5 6 − 7 8 x 2 + y 2 = 1 7 8