An algebra problem by Panshul Rastogi

Algebra Level 1

x + y = 16 x+y = 16
x y = 10 x-y = 10
Find the value of x 2 + y 2 x^2 + y^2 .


The answer is 178.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

8 solutions

Hassan Raza
Jul 30, 2014

G i v e n t h a t x + y = 16 . . . . . . . . ( i ) x y = 10 . . . . . . . . . ( i i ) A d d i n g ( i ) & ( i i ) , w e h a v e 2 x = 26 o r x = 13 P u t t i n g x = 13 i n ( i ) , w e h a v e y = 3 x y = ( 13 ) ( 3 ) = 39 N o w f i n d x 2 + y 2 x 2 + y 2 = x 2 + y 2 + 2 x y 2 x y = ( x + y ) 2 2 x y = ( 16 ) 2 2 ( 39 ) = 256 78 x 2 + y 2 = 178 Given\quad that\\ x+y=16\quad ........\quad (i)\\ x-y=10\quad .........\quad (ii)\\ Adding\quad (i)\quad \& \quad (ii),\quad we\quad have\\ 2x=26\quad or\quad \boxed { x=13 } \\ Putting\quad \boxed { x=13 } \quad in\quad (i),\quad we\quad have\\ \boxed { y=3 } \\ \qquad xy=(13)(3)=39\\ Now\quad find\quad { x }^{ 2 }+{ y }^{ 2 }\\ { x }^{ 2 }+{ y }^{ 2 }={ x }^{ 2 }+{ y }^{ 2 }+2xy-2xy\\ \quad \quad \quad \quad ={ (x+y })^{ 2 }-2xy\\ \quad \quad \quad \quad ={ (16) }^{ 2 }-2(39)\\ \quad \quad \quad \quad =256-78\\ \boxed { { x }^{ 2 }+{ y }^{ 2 }=178 }

Ashish Menon
May 31, 2016

Add the given equations to get:- 2 x = 26 x = 13 2x = 26\\ x = 13
So, 13 + y = 16 y = 3 13 + y = 16\\ y = 3
So, x 2 + y 2 = 13 2 + 3 2 = 169 + 9 = 178 x^2 + y^2 = {13}^2 + 3^2 = 169 + 9 = \color{#69047E}{\boxed{178}} .

Typo: 2 x = 26 2x= 26

Hung Woei Neoh - 5 years ago

Log in to reply

Thanks! I edited it accordingly.

Ashish Menon - 5 years ago
Noel Lo
Jun 10, 2015

adding the two equations we have 2 x = 26 2x=26 and x = 13 x=13 while subtracting the second from the first we have 2 y = 6 2y = 6 or y = 3 y=3 . x 2 + y 2 = 169 + 9 = 178 x^2+y^2 = 169 + 9 = \boxed{178} .

Jesse Glass
Apr 21, 2015

((X+Y)-(X-Y))/2 or (16-10)/2=3, so y=3, therefore, x=13 and x²+y²=13²+3²=169+9=178

Griffin Forsgren
Aug 9, 2014

(x+y)^2=16^2=256 x^2+2xy+y^2=256 (x-y)^2=10^2=100 x^2-2xy+y^2=100 (x+y)^2+(x-y)^2=2x^2+2y^2=356 x^2+y^2=356/2=178

x+y=16 x-y=10 So, x+y+x-y=16+10 So, 2x=26, x+13 So, y=16-13=3

Ans 13^2+3^2 =169+9 =178

Anuj Shikarkhane
Jul 21, 2014

The value of x is 13 and value of y is 3.Therefore,13^2+3^2=178.

Sonali Srivastava
Jul 18, 2014

add the 2 eqns to get x=13 put x=13 in any one eqn n get y=3 x x=169 y y=9 169+9=178

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...