If the points of the intersection of the two ellipses, a 2 x 2 + b 2 y 2 = 1 , and α 2 x 2 + β 2 y 2 = 1
are at the extremities of the conjugate diamaters of the former, find the value of α 2 a 2 + β 2 b 2 .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Let the one of the points of intersection of the two ellipses be ( a cos ϕ , b sin ϕ ) . As the points of are the ends of conjugate diameters, another point of intersection is given by ( − a sin ϕ , b cos ϕ ) .
Now, substituting these points into the equation of the second ellipse, we get α 2 a 2 cos 2 ϕ + β 2 b 2 sin 2 ϕ = α 2 a 2 sin 2 ϕ + β 2 b 2 cos 2 ϕ = 1
Therefore, α 2 a 2 + β 2 b 2 = 2
Problem Loading...
Note Loading...
Set Loading...
P o i n t s o f i n t e r s e c t i o n w i l l b e g i v e n b y x 2 ( a 2 1 − α 2 1 ) + y 2 ( b 2 1 − β 2 1 ) = 0 T h i s e q u a t i o n r e p r e s e n t s a p a i r o f s t r a i g h t l i n e s t h r o u g h t h e o r i g i n . L e t y = m x s a t i s f y t h i s e q u a t i o n . ⇒ ( a 2 1 − α 2 1 ) + m 2 ( b 2 1 − β 2 1 ) = 0 U s i n g p r o p e r t i e s o f c o n j u g a t e d i a m e t e r s , m 1 m 2 = ( b 2 1 − β 2 1 ) ( a 2 1 − α 2 1 ) = − a 2 b 2 ⇒ 1 − α 2 a 2 = − 1 + β 2 b 2 ∴ α 2 a 2 + β 2 b 2 = 2 .