Try this one on for size

Geometry Level 5

If the points of the intersection of the two ellipses, x 2 a 2 + y 2 b 2 = 1 , and x 2 α 2 + y 2 β 2 = 1 \dfrac {x^2} {a^2} + \dfrac{y^2} {b^2} = 1 , \quad \text{ and } \quad \dfrac {x^2} {\alpha^2} + \dfrac{y^2} {\beta^2} = 1

are at the extremities of the conjugate diamaters of the former, find the value of a 2 α 2 + b 2 β 2 \dfrac{a^2}{\alpha^2} + \dfrac{b^2}{\beta^2} .

0 None of these choices 1 -1 2

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Vishnu C
Mar 20, 2015

P o i n t s o f i n t e r s e c t i o n w i l l b e g i v e n b y x 2 ( 1 a 2 1 α 2 ) + y 2 ( 1 b 2 1 β 2 ) = 0 T h i s e q u a t i o n r e p r e s e n t s a p a i r o f s t r a i g h t l i n e s t h r o u g h t h e o r i g i n . L e t y = m x s a t i s f y t h i s e q u a t i o n . ( 1 a 2 1 α 2 ) + m 2 ( 1 b 2 1 β 2 ) = 0 U s i n g p r o p e r t i e s o f c o n j u g a t e d i a m e t e r s , m 1 m 2 = ( 1 a 2 1 α 2 ) ( 1 b 2 1 β 2 ) = b 2 a 2 1 a 2 α 2 = 1 + b 2 β 2 a 2 α 2 + b 2 β 2 = 2 . Points\quad of\quad intersection\quad will\quad be\quad given\quad by\\ { x }^{ { 2 } }(\frac { 1 }{ { a }^{ 2 } } -\frac { { 1 } }{ \alpha ^{ 2 } } )+{ y }^{ { 2 } }(\frac { 1 }{ { b }^{ 2 } } -\frac { { 1 } }{ { \beta }^{ 2 } } )=0\\This\quad equation\quad represents\quad a\quad pair\quad of\quad straight\quad lines\quad through\\the\quad origin.\\Let\quad y=mx\quad satisfy\quad this\quad equation.\\ \Rightarrow (\frac { 1 }{ { a }^{ 2 } } -\frac { { 1 } }{ \alpha ^{ 2 } } )+{ m }^{ 2 }(\frac { 1 }{ { b }^{ 2 } } -\frac { { 1 } }{ { \beta }^{ 2 } } )=0\\ Using\quad properties\quad of\quad conjugate\quad diameters,\quad \\{ m }_{ 1 }{ m }_{ 2 }=\frac { (\frac { 1 }{ { a }^{ 2 } } -\frac { { 1 } }{ \alpha ^{ 2 } } ) }{ (\frac { 1 }{ { b }^{ 2 } } -\frac { { 1 } }{ { \beta }^{ 2 } } ) } =-\frac { { b }^{ 2 } }{ a^{ 2 } }\\ \Rightarrow 1-\frac { { a }^{ 2 } }{ { \alpha }^{ 2 } } =-1+\frac { b^{ 2 } }{ { \beta }^{ 2 } }\\\therefore \quad \frac { { a }^{ 2 } }{ { \alpha }^{ 2 } } +\frac { b^{ 2 } }{ { \beta }^{ 2 } } =\boxed{2}.

Deeparaj Bhat
Mar 17, 2016

Let the one of the points of intersection of the two ellipses be ( a cos ϕ , b sin ϕ ) (a\cos \phi, b\sin \phi) . As the points of are the ends of conjugate diameters, another point of intersection is given by ( a sin ϕ , b cos ϕ ) (-a\sin \phi, b\cos \phi) .

Now, substituting these points into the equation of the second ellipse, we get a 2 α 2 cos 2 ϕ + b 2 β 2 sin 2 ϕ = a 2 α 2 sin 2 ϕ + b 2 β 2 cos 2 ϕ = 1 \frac{a^2}{\alpha^2} \cos^2\phi+\frac{b^2}{\beta^2} \sin^2\phi=\frac{a^2}{\alpha^2} \sin^2\phi+\frac{b^2}{\beta^2} \cos^2\phi=1

Therefore, a 2 α 2 + b 2 β 2 = 2 \frac{a^2}{\alpha^2}+\frac{b^2}{\beta^2}=2

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...