Try to clear this factorial mess!

Simplify and give your answer as an integer:

( 10 ! + 9 ! ) ( 8 ! + 7 ! ) ( 6 ! + 5 ! ) ( 4 ! + 3 ! ) ( 2 ! + 1 ! ) ( 10 ! 9 ! ) ( 8 ! 7 ! ) ( 6 ! 5 ! ) ( 4 ! 3 ! ) ( 2 ! 1 ! ) . \large \dfrac{\color{#3D99F6}(10! + 9!)(8! + 7!)(6! + 5!)(4! + 3!)(2! + 1!)}{\color{#D61F06}(10! - 9!)(8! - 7!)(6! - 5!)(4! - 3!)(2! - 1!)}.


The answer is 11.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Hana Wehbi
Nov 11, 2017

( 10 ! + 9 ! ) ( 8 ! + 7 ! ) ( 6 ! + 5 ! ) ( 4 ! + 3 ! ) ( 2 ! + 1 ! ) ( 10 ! 9 ! ) ( 8 ! 7 ! ) ( 6 ! 5 ! ) ( 4 ! 3 ! ) ( 2 ! 1 ! ) = \large \dfrac{\color{#3D99F6}(10! + 9!)(8! + 7!)(6! + 5!)(4! + 3!)(2! + 1!)}{\color{#D61F06}(10! - 9!)(8! - 7!)(6! - 5!)(4! - 3!)(2! - 1!)} =

9 ! ( 10 + 1 ) 7 ! ( 8 + 1 ) 5 ! ( 6 + 1 ) 3 ! ( 4 + 1 ) 1 ! ( 2 + 1 ) 9 ! ( 10 1 ) 7 ! ( 8 1 ) 5 ! ( 6 1 ) 3 ! ( 4 1 ) 1 ! ( 2 1 ) = \large \dfrac{\color{#3D99F6}9!(10 + 1)7! (8+ 1)5!(6+1)3!(4+1)1!(2+1)}{\color{#D61F06}9!(10-1)7!(8-1)5!(6-1)3!(4-1)1!(2-1)}=

After cancelling the factorial terms from the Numerator and Denominator we get:

11 × 9 × 7 × 5 × 3 9 × 7 × 5 × 3 × 1 = 11 \frac{ 11\times\color{#D61F06} 9\times 7\times 5\times 3}{\color{#D61F06}9\times 7\times 5\times3\times1}= 11

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...