Math Series #1

Calculate 1 3 + 2 3 + 3 3 + . . . + 1 0 3 1^3 + 2^3 + 3^3 + ... + 10^3 without a calculator (Hint: There's a formula for this).


The answer is 3025.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Pop Wong
Mar 3, 2021

1 3 + 2 3 = 1 + 8 = 9 = 3 2 1^3 + 2^3 = 1 + 8 = 9 = 3^2

1 3 + 2 3 + 3 3 = 9 + 27 = 36 = 6 2 1^3 + 2^3 +3^3 = 9 + 27 = 36 = 6^2

Guess 1 3 + 2 3 + . . . . + n 3 = ( 1 + 2 + . . . + n ) 2 1^3 + 2^3 + ....+ n^3 = (1+2+...+n)^2

n = 1 , 2 , 3 n = 1, 2, 3 are true

Assume n = k n = k is true

1 3 + 2 3 + . . . . + k 3 = ( 1 + 2 + . . . + k ) 2 = ( k ( k + 1 ) 2 ) 2 1^3 + 2^3 + ....+ k^3 = (1+2+...+k)^2 = (\cfrac{k(k+1)}{2})^2

When n = k + 1 n=k+1 ,

1 3 + 2 3 + . . . . + k 3 + ( k + 1 ) 3 = ( k ( k + 1 ) 2 ) 2 + ( k + 1 ) 3 = ( ( k + 1 ) 2 ( k 2 + 4 ( k + 1 ) ) 4 ) = ( ( k + 1 ) 2 ( k 2 + 4 k + 4 ) ) 4 ) = ( ( k + 1 ) 2 ( k + 2 ) 2 ) 4 ) = ( ( k + 1 ) ( k + 2 ) ) 2 ) 2 = ( 1 + 2 + . . . + k + ( k + 1 ) ) 2 1^3 + 2^3 + ....+ k^3 + (k+1)^3 \\ = (\cfrac{k(k+1)}{2})^2 + (k+1)^3 \\ = (\cfrac{(k+1)^2(k^2+4(k+1))}{4})\\ = (\cfrac{(k+1)^2(k^2+4k+4))}{4})\\ = (\cfrac{(k+1)^2(k+2)^2)}{4})\\ = (\cfrac{(k+1)(k+2))}{2})^2\\ = \left(1+2+...+k+(k+1)\right)^2

proved by Induction.

1 3 + 2 3 + . . . . + n 3 = ( 1 + 2 + . . . + n ) 2 = ( 10 ( 11 ) 2 ) 2 = 5 5 2 = 3025 \therefore 1^3 + 2^3 + ....+ n^3 = (1+2+...+n)^2 = \left(\cfrac{10(11)}{2}\right)^2 = 55^2 = \boxed{3025}

Nice! I liked that you proved the formula.

Avner Lim - 3 months ago
Avner Lim
Mar 2, 2021

1 3 + 2 3 + 3 3 + . . . + n 3 = ( 1 + 2 + 3 + . . . + n ) 2 = n ( n + 1 ) 2 2 1^3 + 2^3 + 3^3 + ... + n^3 = (1 + 2 + 3 + ... + n)^2 = \frac{n(n+1)}{2}^2 , so 1 3 + 2 3 + 3 3 + . . . + 1 0 3 = 10 × ( 10 + 1 ) 2 2 = 5 5 2 = 3025 1^3 + 2^3 + 3^3 + ... + 10^3 = \frac{10 \times (10+1)}{2}^2 = 55^2 = \boxed{3025}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...