Breaking roots

Algebra Level 4

How many complex root(s) that satisfy the equation

x 98 99 + x 97 99 + + x 2 99 + x 99 + 1 = 0 ? \large \sqrt[99]{x^{98}} + \sqrt[99]{x^{97}} + \cdots + \sqrt[99]{x^2} + \sqrt[99]{x} + 1 = 0?

0 98 3 2 1

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Paul Ryan Longhas
May 11, 2016

x 98 99 + x 97 99 + . . . + x 2 99 + x 99 + 1 = 0 \sqrt[99]{x^{98}} + \sqrt[99]{x^{97}} + ... + \sqrt[99]{x^2} + \sqrt[99]{x} + 1 = 0

( x 99 1 ) ( x 98 99 + x 97 99 + . . . + x 2 99 + x 99 + 1 ) = 0 ( x 99 1 ) \implies (\sqrt[99]{x} -1)(\sqrt[99]{x^{98}} + \sqrt[99]{x^{97}} + ... + \sqrt[99]{x^2} + \sqrt[99]{x} + 1)= 0 (\sqrt[99]{x} -1)

x 99 99 1 = 0 x 1 = 0 \implies \sqrt[99]{x^{99}} - 1 = 0 \implies x - 1 = 0

Thus, x = 1 x = 1 which not satisfy the equation.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...