integral_04 (Try using beta function)

Calculus Level 5

0 π / 2 sin 2 t ln ( sin t ) d t \int_0^{\pi /2} \sin^2 t \cdot \ln(\sin t) \, dt

The value of the integral above can be expressed as π a b ( c ln d ) \dfrac{\pi^a}b (c - \ln d) , where a a , b b , c c , and d d are integers.

Find the smallest possible value of a + b + c + d a+b+c+d .


The answer is 14.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Jun 22, 2019

I = 0 π 2 sin 2 t ln ( sin t ) d t = 0 π 2 1 2 ( 1 cos 2 t ) ln ( sin t ) d t Using integration by parts = 1 2 ( t sin 2 t 2 ) ln ( sin t ) 0 π 2 1 2 0 π 2 t cot t d t + 1 4 0 π 2 sin 2 t cot t d t By integration by parts again = 0 1 2 t ln ( sin t ) 0 π 2 + 1 2 0 π 2 ln ( sin t ) d t + 1 2 0 π 2 cos 2 t d t = 0 0 π 4 ln 2 + 1 4 0 π 2 ( 1 + cos 2 t ) d t See note: 0 π 2 ln ( sin x ) d x = π 2 ln 2 = π 4 ln 2 + 1 4 [ t + sin 2 t 2 ] 0 π 2 = π 4 ln 2 + π 8 = π 8 ( 1 ln 4 ) \begin{aligned} I & = \int_0^\frac \pi 2 \sin^2 t \ln (\sin t) \ dt \\ & = \int_0^\frac \pi 2 \frac 12 (1-\cos 2 t) \ln (\sin t) \ dt & \small \color{#3D99F6} \text{Using integration by parts} \\ & = \frac 12 \left( t - \frac {\sin 2t}2 \right) \ln (\sin t) \bigg|_0^\frac \pi 2 - {\color{#3D99F6} \frac 12 \int_0^\frac \pi 2 t\cot t \ dt }+ \frac 14 \int_0^\frac \pi 2 \sin 2t \cot t \ dt & \small \color{#3D99F6} \text{By integration by parts again} \\ & = 0 - {\color{#3D99F6} \frac 12 t \ln (\sin t) \bigg|_0^\frac \pi 2 + \frac 12 \int_0^\frac \pi 2 \ln (\sin t) \ dt} + \frac 12 \int_0^\frac \pi 2 \cos^2 t \ dt \\ & = 0 - {\color{#3D99F6} 0 - \frac \pi 4 \ln 2} + \frac 14 \int_0^\frac \pi 2 (1+\cos 2 t) \ dt & \small \color{#3D99F6} \text{See note: } \int_0^\frac \pi 2 \ln(\sin x) \ dx = -\frac \pi 2 \ln 2 \\ & = -\frac \pi 4 \ln 2 + \frac 14 \left[ t + \frac {\sin 2t}2 \right]_0^\frac \pi 2 \\ & = -\frac \pi 4 \ln 2 + \frac \pi 8 \\ & = \frac \pi 8 (1- \ln 4) \end{aligned}

Therefore, a + b + c + d = 1 + 8 + 1 + 4 = 14 a+b+c+d = 1+8+1+4 = \boxed{14} .


Note:

J = 0 π 2 ln ( sin x ) d x By identity: a b f ( x ) d x = a b f ( a + b x ) d x = 1 2 0 π 2 ( ln ( sin x ) + ln ( cos x ) ) d x = 1 2 0 π 2 ln ( sin x cos x ) d x = 1 2 0 π 2 ln ( sin 2 x 2 ) d x = 1 2 0 π 2 ln ( sin 2 x ) d x 1 2 0 π 2 ln 2 d x Let u = 2 x d u = 2 d x = 1 4 0 π ln ( sin u ) d u π 4 ln 2 Since ln ( sin u ) is symmetrical about u = π 2 = 1 2 0 π 2 ln ( sin u ) d u π 4 ln 2 Note that 0 π 2 ln ( sin u ) d u = J = 1 2 J π 4 ln 2 = π 2 ln 2 \begin{aligned} J & = \int_0^\frac \pi 2 \ln (\sin x)\ dx & \small \color{#3D99F6} \text{By identity: }\int_a^b f(x)\ dx = \int_a^b f(a+b-x)\ dx \\ & = \frac 12 \int_0^\frac \pi 2 (\ln (\sin x) + \ln (\cos x))\ dx \\ & = \frac 12 \int_0^\frac \pi 2 \ln (\sin x \cos x)\ dx \\ & = \frac 12 \int_0^\frac \pi 2 \ln \left(\frac {\sin 2x}2 \right)\ dx \\ & = {\color{#3D99F6} \frac 12 \int_0^\frac \pi 2 \ln (\sin 2x)\ dx} - \frac 12 \int_0^\frac \pi 2 \ln 2 \ dx & \small \color{#3D99F6} \text{Let } u = 2x \implies du = 2\ dx \\ & = {\color{#3D99F6} \frac 14 \int_0^\pi \ln (\sin u)\ du} - \frac \pi 4 \ln 2 & \small \color{#3D99F6} \text{Since } \ln (\sin u) \text{ is symmetrical about }u = \frac \pi 2 \\ & = {\color{#3D99F6} \frac 12 \int_0^\frac \pi 2 \ln (\sin u)\ du} - \frac \pi 4 \ln 2 & \small \color{#3D99F6} \text{Note that } \int_0^\frac \pi 2 \ln (\sin u)\ du = J \\ & = {\color{#3D99F6} \frac 12 J} - \frac \pi 4 \ln 2 \\ & = - \frac \pi 2 \ln 2 \end{aligned}

Hassan Abdulla
Jun 21, 2019

β ( x , y ) = 2 0 π 2 sin 2 x 1 ( t ) cos 2 y 1 ( t ) d t d d x β ( x , y ) = 2 d d x 0 π 2 sin 2 x 1 ( t ) cos 2 y 1 ( t ) d t β ( x , y ) ( ψ ( x ) ψ ( x + y ) ) = 4 0 π 2 sin 2 x 1 ( t ) cos 2 y 1 ( t ) ln ( sin ( t ) ) d t d d x B ( x , y ) = B ( x , y ) ( ψ ( x ) ψ ( x + y ) ) β ( 3 2 , 1 2 ) ( ψ ( 3 2 ) ψ ( 2 ) ) = 4 0 π 2 sin 2 ( t ) ln ( sin ( t ) ) d t x = 3 2 , y = 1 2 π 2 ( ( 2 2 ln ( 2 ) γ ) ( 1 γ ) ) = 4 I β ( 3 2 , 1 2 ) = π 2 , ψ ( 3 2 ) = 2 2 ln ( 2 ) γ , ψ ( 2 ) = 1 γ I = π 8 ( 1 2 ln ( 2 ) ) = π 8 ( 1 ln ( 4 ) ) a = 1 , b = 8 , c = 1 , d = 4 Note: β ( 3 2 , 1 2 ) = Γ ( 3 2 ) Γ ( 1 2 ) Γ ( 3 2 + 1 2 ) = 1 2 Γ ( 1 2 ) Γ ( 1 2 ) Γ ( 2 ) = π 2 / / Γ ( 1 2 ) = π / / Γ ( n + 1 ) = n Γ ( n ) ψ ( 3 2 ) = ψ ( 1 + 1 2 ) = 2 γ 2 ln ( 2 ) / / ψ ( n + 1 2 ) = γ 2 ln ( 2 ) k = 1 n 1 2 k 1 = ψ ( 2 ) = 1 + ψ ( 1 ) / / ψ ( n + 1 ) = 1 n + ψ ( n ) / / ψ ( 1 ) = γ \begin{aligned} & \beta(x,y)=2\int_{0}^{\frac{\pi}{2}}\sin^{2x-1}(t)\cos^{2y-1}(t)dt\\ & \frac{d}{dx}\beta(x,y)=2\frac{d}{dx}\int_{0}^{\frac{\pi}{2}}\sin^{2x-1}(t)\cos^{2y-1}(t)dt\\ & \beta(x,y)\left(\psi(x)-\psi(x+y)\right)=4\int_{0}^{\frac{\pi}{2}}\sin^{2x-1}(t)\cos^{2y-1}(t)\ln(\sin(t))dt & & \color{#D61F06}\frac{d}{dx}B(x,y)=B(x,y)\left(\psi(x)-\psi(x+y)\right)\\ & \beta(\frac{3}{2},\frac{1}{2})\left(\psi(\frac{3}{2})-\psi(2)\right)=4\int_{0}^{\frac{\pi}{2}}\sin^2(t)\ln(\sin(t))dt & & \color{#D61F06}x=\frac{3}{2},y=\frac{1}{2}\\ & \frac{\pi}{2}\left(\left(2-2\ln(2)-\gamma\right)-\left(1-\gamma\right)\right)=4I & & \color{#D61F06}\beta(\frac{3}{2},\frac{1}{2})=\frac{\pi}{2},\psi(\frac{3}{2})=2-2\ln(2)-\gamma,\psi(2)=1-\gamma\\ & I=\frac{\pi}{8}\left(1-2\ln(2)\right)=\frac{\pi}{8}\left(1-\ln(4)\right)\\ & a=1,b=8,c=1,d=4 \\ & \color{#3D99F6} \text{Note:}\\ & \color{#3D99F6} \beta(\frac{3}{2},\frac{1}{2})=\frac{\Gamma(\frac{3}{2})\Gamma(\frac{1}{2})}{\Gamma(\frac{3}{2}+\frac{1}{2})}=\frac{\frac{1}{2}\Gamma(\frac{1}{2})\Gamma(\frac{1}{2})}{\Gamma(2)}=\frac{\pi}{2}//\Gamma(\frac{1}{2})=\sqrt\pi//\Gamma(n+1)=n\Gamma(n)\\ & \color{#3D99F6} \psi(\frac{3}{2})=\psi(1+\frac{1}{2})=2-\gamma-2\ln(2)//\psi(n+\frac{1}{2})=-\gamma-2\ln(2)-\sum_{k=1}^n\frac{1}{2k-1}=\\ & \color{#3D99F6} \psi(2)=1+\psi(1)//\psi(n+1)=\frac{1}{n}+\psi(n)//\psi(1)=-\gamma \end{aligned}\\

sin 2 ( t ) log ( sin ( t ) ) d t 1 8 ( 2 i Li 2 ( e 2 i t ) + 2 t ( i t 2 log ( 1 e 2 i t ) + 2 log ( sin ( t ) ) + 1 ) + sin ( 2 t ) ( 1 2 log ( sin ( t ) ) ) ) \int \sin ^2(t) \log (\sin (t)) \, dt \Rightarrow \frac{1}{8} \left(2 i \text{Li}_2\left(e^{2 i t}\right)+2 t \left(i t-2 \log \left(1-e^{2 i t}\right)+2 \log (\sin (t))+1\right)+\sin (2 t) (1-2 \log (\sin (t)))\right)

1 8 ( 2 i Li 2 ( e 2 i t ) + 2 t ( i t 2 log ( 1 e 2 i t ) + 2 log ( sin ( t ) ) + 1 ) + sin ( 2 t ) ( 1 2 log ( sin ( t ) ) ) ) \frac{1}{8} \left(2 i \text{Li}_2\left(e^{2 \mathbb{i} t}\right)+2 t \left(\mathbb{i} t-2 \log \left(1-e^{2 \mathbb{i} t}\right)+2 \log (\sin (t))+1\right)+\sin (2 t) (1-2 \log (\sin (t)))\right) \Rightarrow ( 1 8 ( π ( 1 + i π 2 2 log ( 2 ) ) 1 6 ( i π 2 ) ) ) ( i π 2 24 ) (\frac{1}{8} \left(\pi \left(1+\frac{\mathbb{i} \pi }{2}-2 \log (2)\right)-\frac{1}{6} \left(\mathbb{i} \pi ^2\right)\right))-(\frac{\mathbb{i} \pi ^2}{24}) \Rightarrow 1 8 π 1 ( 1 log ( 4 ) ) \frac{1}{8} \pi ^1 (1-\log (4))

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...