Try without finding the sum...

Number Theory Level pending

What is the remainder when 1 2 + 2 2 + 3 2 + + 9 9 2 1^2 +2^2 + 3^2 + \cdots + 99^2 is divided by 9?

6 4 5 7 8 3

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Syed Hamza Khalid
Sep 15, 2018

k = 1 99 k 2 11 k = 1 9 k 2 ( m o d 9 ) \displaystyle\sum_{k=1}^{99} k^2 \equiv 11 \displaystyle\sum_{k=1}^9 k^2\pmod{9}

because

( 9 m + 1 ) 2 + ( 9 m + 2 ) 2 + ( 9 m + 9 ) 2 1 2 + 2 2 + + 9 2 ( m o d 9 ) (9m+1)^2+(9m+2)^2+\cdots (9m+9)^2 \equiv 1^2+2^2+\cdots+9^2 \pmod{9} for any m Z m \in \mathbb Z 4 k = 1 4 k 2 ( m o d 9 ) \equiv 4 \displaystyle\sum_{k=1}^4 k^2\pmod{9} because k 2 ( 9 k ) 2 ( m o d 9 ) ) k^2 \equiv (9-k)^2\pmod{9}) 3 ( m o d 9 ) . \equiv 3\pmod{9}. The remainder is 3.

X X
Sep 15, 2018

1 2 + 2 2 + 3 2 + . . . + 9 9 2 = 99 × 100 × 199 6 = 33 × 50 × 199 1^2+2^2+3^2+...+99^2=\frac{99\times100\times199}6=33\times50\times199

33 × 50 × 199 6 × 5 × 1 3 ( m o d 9 ) 33\times50\times199\equiv6\times5\times1\equiv3\pmod9

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...