Try this problem.

Algebra Level 1

n + 1 = 200 6 2 + 200 7 2 , 2 n + 1 = ? n + 1 = 2006^2 +2007^2, \ \ \ \ \ \ \ \ \ \ \sqrt{2n+ 1 } = \ ?


The answer is 4013.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

13 solutions

Chew-Seong Cheong
Sep 19, 2014

n + 1 = 200 6 2 + 200 7 2 n+1 = 2006^2+2007^2

n = 200 6 2 + 200 7 2 1 \Rightarrow n = 2006^2 + 2007^2 -1

= 200 6 2 + ( 2007 + 1 ) ( 2007 1 ) \quad \quad = 2006^2 + (2007+1)(2007-1)

= 200 6 2 + 2008 ( 2006 ) \quad \quad = 2006^2 + 2008(2006)

= 2006 ( 2006 + 2008 ) \quad \quad = 2006(2006+2008)

= 2006 ( 4014 ) \quad \quad = 2006(4014)

2 n + 1 = 4012 ( 4014 ) + 1 \Rightarrow 2n + 1 = 4012(4014) + 1

= 4012 ( 4012 + 2 ) + 1 \quad \quad \quad \quad = 4012(4012+2)+1

= 401 2 2 + 2 ( 4012 ) + 1 \quad \quad \quad \quad = 4012^2 + 2(4012)+1

= ( 4012 + 1 ) 2 = 401 3 2 \quad \quad \quad \quad = (4012+1)^2 = 4013^2

2 n + 1 = 4013 \Rightarrow \sqrt{2n + 1} = \boxed{4013}

Intelligent,Chew-Seong

Kazmeen Safdar - 6 years, 7 months ago

Good but very lengthy solutions!

Abe Morillo - 6 years, 6 months ago

superb.......!!

Tejal Barnwal - 6 years, 1 month ago

nice solution

Ravi Jhajharia - 6 years, 8 months ago

very good.

Takwa Tri Subekti Subekti - 6 years, 7 months ago
Igor Pontes
Oct 14, 2014

I've got a solution for the general case. Let us suppose a =2006, (a+1 = 2007). Thus n = a 2 + ( a + 1 ) 2 1 n = a^2+(a+1)^2 -1 Thus 2 n + 1 = 2 ( a 2 + ( a + 1 ) 2 1 ) + 1 = 4 a 2 + 4 a + 1 = ( 2 a + 1 ) 2 2n+1 = 2( a^2+(a+1)^2 -1) +1 = 4a^2+4a+1 = (2a+1)^2 By applying the sqrt ( 2 n + 1 ) = 2 a + 1 \sqrt{(2n+1 )} = 2a+1 leading us to the solution 4013. Notice that this formula is valid for any real a.

I Came Nearer To It But I Did Not Think in Such a way

Suresh Palaparthi - 6 years, 6 months ago

i have done this

sabiha sultana - 6 years, 5 months ago

nice solution

Ahmad Bilal Sabawoon - 6 years, 1 month ago

I did the same way

Apoorv Singhal - 6 years, 1 month ago
Rishabh Jain
Sep 20, 2014

n + 1 n+1 = 200 6 2 + 200 7 2 2006^{2} + 2007^{2} ,

n + 1 n+1 = 200 6 2 + ( 2006 + 1 ) 2 2006^{2} + (2006+1)^{2} ,

n + 1 n+1 = 200 6 2 + 200 6 2 + 1 + 2.2006.1 2006^{2} + 2006^{2}+1+2.2006.1 ,

n n = 200 6 2 + 200 6 2 + 2.2006 2006^{2} + 2006^{2}+2.2006

2 n 2n = 4.200 6 2 + 4.2006 4.2006^{2}+4.2006

2 n + 1 2n+1 = 4.200 6 2 + 4.2006 + 1 4.2006^{2}+4.2006+1

now make perfect square a nd you will get the answer 4013 \boxed{4013}

n+1=2006^2+(2006+1)^2 2n=4012^2+2*4012 sqrt(2n+1)=4012+1=4013

Pooja Deshmukh - 6 years, 8 months ago
Hitoshi Yamamoto
Feb 8, 2015

Patrick Chkoreff
Nov 12, 2014

: n+1 = 2006^2 + 2007^2

: n+1 = 2006^2 + (2006+1)^2

: n+1 = 2006^2 + 2006^2 + 2 * 2006 + 1

: n+1 = 2 * 2006^2 + 2 * 2006 + 1

: n = 2 * 2006^2 + 2 * 2006

: 2n = 4 * 2006^2 + 4 * 2006

: 2n+1 = 4 * 2006^2 + 4 * 2006 + 1

: 2n+1 = (2 * 2006+1)^2

: sqrt(2n+1) = 2 * 2006+1

Wahyu August
Apr 23, 2015

Formula using:
x2 + y2 = (x-y)2 + 2 x y x2 – y2 = (x+y)(x-y) Solution : N + 1 = 20072 +20062 N + 1 = (2007-2006)2 + 2 2007 2006 N +1 = 12 + 2 2007 2006 N = 2 2007 2006 So, √2N +1 = √2 2 2007 2006 +1 √2N +1 = √2 2007 2 2006 +1 √2N +1 = √4014*4012 +1 √2N +1 = √(4013+1)(4013-1) +1 √2N +1 = √40132 -12 + 1 √2N +1 = √40132 -1 + 1 √2N +1 =√40132
√2N +1 = 4013

ea bornok ...

Andi Susanto - 6 years, 1 month ago

2n + 1 = 2 \times 2006^{2 } + 2 \times 2007^{2} - 1

2n + 1 = 2 \times 2006^{2 } + 2 \times 2007^{2} - (2007 - 2006)^{2}

2n + 1 = 2006^{2 } + 2007^{2} + 2 \ times 2006 \ times 2007

2n + 1 = (2007 + 2006)^{2}

\sqrt{2n +1} = 4013

Sunil Pradhan
Apr 27, 2015

Let a = 2006 then a² + (a + 1)² = n + 1

2a² + 2a = n

2n + 1 = 2(2a² + 2a) + 1 = 4a² + 4a + 1 = (2a + 1)²

(2n + 1)^1/2 = 2a + 1 = 2006 × 2 + 1 = 4013

Owais Arshad
Apr 26, 2015

Let x=2006

n+1=x^2 + (x+1)^2

n+1=x^2 + x^2 +2x +1

n=2x^2 + 2x

Sqrt (2n +1)=sqrt (4x^2 +4x+1)

=sqrt (2x+1)^2

=2x+1

=2 (2006)+1

=4013

Jesús Manrique
Apr 22, 2015

I just rewrote the 1 in LHS as (2007-2006)^2 and expanded. Then, the two terms in the RHS cancel, resulting in n = 2×2006×2007. Later, I calculated the root as sqrt (n+n+1), where I substituted the original equation and and that obtained before. Thus, sqrt (2006^2 + 2007^2 + 2×2006×2007) = sqrt[(2006+2007)^2] = 2006+2007 = 4013. Done!

Ivy Dal Curbi
Apr 22, 2015

first, find n. n=(2006 2006) + (2007 2007) -1 n=8,052,084

then sqrt 2(8,052,084) + 1

sqrt 16,104,169

equals 4013

Amandeep Verma
Apr 21, 2015

We have, n+1=2006^2 + 2007^2 & by solving we get, n=8052084.. Now put the value of n ... We get 4013 which is the required answer.

Curtis Hoier
Apr 20, 2015

Let x = 2006.

2006^2 + 2007^2 = x^2 + (x + 1)^2

n + 1 = x^2 + x^2 + 2x + 1

n = x^2 + x^2 + 2x = 2x^2 + 2x

2n + 1 = 4x^2 + 4x + 1 = (2x + 1)^2

Sqrt(2n + 1) = 2x + 1 = 2×2006 + 1 = 4013

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...