Turn it this way

Algebra Level 1

The point ( 4 + 7 3 , 7 4 3 ) \left(4+7\sqrt{3}\ ,\ 7-4\sqrt{3}\right) is rotated π 3 \dfrac{\pi}{3} radians counterclockwise about the origin. If the resulting image is ( a , b ) (a,b) , then what is a + b a+b ?


The answer is 22.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Andy Hayes
Jun 24, 2016

The corresponding number in the complex plane is ( 4 + 7 3 ) + i ( 7 4 3 ) \left(4+7\sqrt{3}\right)+i\left(7-4\sqrt{3}\right) .

The corresponding number for the rotation is e π i / 3 = 1 2 + i 3 2 e^{\pi i/3}=\frac{1}{2}+i\frac{\sqrt{3}}{2} .

To achieve the rotation image in the complex plane, multiply these numbers.

( 3 2 ( 4 + 7 3 ) + i ( 7 4 3 ) ) ( 1 2 + i 3 2 ) = 8 + 14 i \left(\vphantom{\frac{\sqrt{3}}{2}}\left(4+7\sqrt{3}\right)+i\left(7-4\sqrt{3}\right)\right)\left(\frac{1}{2}+i\frac{\sqrt{3}}{2}\right)=8+14i

This corresponds to the point ( 8 , 14 ) (8,14) in the coordinate plane. Therefore, a + b = 22 a+b=\boxed{22} .

Why does multiplication give us the rotation image?

Atomsky Jahid - 4 years, 11 months ago

Log in to reply

It's one of the interesting properties of complex numbers. For every complex number a + b i a+bi , there is a magnitude, r = a 2 + b 2 r=\sqrt{a^2+b^2} , and an angle, θ = arctan b a \theta=\text{arctan}\frac{b}{a} . In polar form , the complex number is written as r e i θ re^{i\theta} . You can put the complex number back into standard form using Euler's formula : r e i θ = r cos θ + i r sin θ re^{i\theta}=r\cos{\theta}+ir\sin{\theta}

Suppose there are two complex numbers r 1 e i θ 1 r_1e^{i\theta_1} and r 2 e i θ 2 r_2e^{i\theta_2} . Their product is:

r 1 e i θ 1 × r 2 e i θ 2 = r 1 r 2 e i ( θ 1 + θ 2 ) = r 1 r 2 cos ( θ 1 + θ 2 ) + i r 1 r 2 sin ( θ 1 + θ 2 ) \begin{aligned} r_1e^{i\theta_1}\times r_2e^{i\theta_2}&=r_1r_2e^{i(\theta_1+\theta_2)} \\ &=r_1r_2\cos(\theta_1+\theta_2)+ir_1r_2\sin(\theta_1+\theta_2) \end{aligned}

The consequence of multiplying complex numbers is that their angles are added together. Thus, a rotation is achieved.

Andy Hayes - 4 years, 11 months ago
Tom Engelsman
Feb 24, 2021

Using the rotation transformation matrix in R 2 \mathbb{R^2} :

[ cos θ sin θ sin θ cos θ ] \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}

the require image point is computed per:

[ cos ( π / 3 ) sin ( π / 3 ) sin ( π / 3 ) cos ( π / 3 ) ] [ 4 + 7 3 7 4 3 ] = [ 8 14 ] = [ a b ] . \begin{bmatrix} \cos(\pi/3) & -\sin(\pi/3) \\ \sin(\pi/3) & \cos(\pi/3) \end{bmatrix} \cdot \begin{bmatrix} 4+7\sqrt{3} \\ 7 -4\sqrt{3} \end{bmatrix} = \begin{bmatrix} 8 \\ 14 \end{bmatrix} =\begin{bmatrix} a \\ b \end{bmatrix} .

Thus, a + b = 22 . a+b=\boxed{22}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...