Turning discontinuity into continuity (2017 CHKMO)

Algebra Level 5

Find the smallest positive value of the nonnegative number λ \lambda such that the inequality a + b 2 λ a b + ( 1 λ ) a 2 + b 2 2 \frac{a+b}{2}\ge \lambda \sqrt{ab}+(1-\lambda) \sqrt{\frac{a^2+b^2}{2}} holds for all positive real numbers a , b a,b .


The answer is 0.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Mark Hennings
Mar 29, 2021

Since the inequality is homogeneous of degree 2 2 , we can assume without loss of generality that a 2 + b 2 = 2 a^2 + b^2 = 2 , and therefore we can write a = 2 cos θ a = \sqrt{2}\cos\theta and b = 2 sin θ b = \sqrt{2}\sin\theta for 0 θ 1 2 π 0 \le \theta \le \tfrac12\pi . Thus we require 1 2 ( cos θ + sin θ ) λ 2 sin θ cos θ + 1 λ λ ( 1 sin 2 θ ) 1 cos ( θ 1 4 π ) \begin{aligned} \tfrac{1}{\sqrt{2}}(\cos\theta + \sin\theta) & \ge \; \lambda\sqrt{2\sin\theta\cos\theta} + 1 - \lambda \\ \lambda\big(1 - \sqrt{\sin2\theta}\big) & \ge \; 1 - \cos(\theta-\tfrac14\pi) \end{aligned} for 0 θ 1 2 π 0 \le \theta \le \tfrac12\pi . Putting φ = θ 1 4 π \varphi = \theta - \tfrac14\pi , we need λ ( 1 cos 2 φ ) 1 cos φ λ 1 cos φ 1 cos 2 φ = ( 1 cos φ ) ( 1 + cos 2 φ ) 1 cos 2 φ = 1 + cos 2 φ 4 cos 2 1 2 φ \begin{aligned} \lambda\big(1 - \sqrt{\cos2\varphi}\big) & \ge \; 1 - \cos\varphi \\ \lambda & \ge \; \frac{1 - \cos\varphi}{1 - \sqrt{\cos2\varphi}} \; =\; \frac{(1 - \cos\varphi)\big(1 + \sqrt{\cos2\varphi}\big)}{1 - \cos2\varphi} \; = \; \frac{1 + \sqrt{\cos2\varphi}}{4\cos^2\frac12\varphi} \end{aligned} for 1 4 π φ = θ 1 4 π 1 4 π -\tfrac14\pi \le \varphi = \theta - \tfrac14\pi \le \tfrac14\pi . Putting c = cos φ c= \cos\varphi we require λ F ( c ) = 1 + 2 c 2 1 2 ( c + 1 ) 1 2 c 1 \lambda \; \ge \; F(c) \; = \; \frac{1 + \sqrt{2c^2 - 1}}{2(c+1)} \hspace{2cm} \tfrac{1}{\sqrt{2}} \le c \le 1 Now F ( c ) = c ( c + 1 ) 2 c 2 1 1 + 2 c 2 1 2 ( c + 1 ) 2 = 1 2 ( c + 1 ) 2 2 c 2 1 [ 2 c ( c + 1 ) 2 c 2 1 ( 1 + 2 c 2 1 ) ] = 1 + 2 c 2 c 2 1 2 ( c + 1 ) 2 2 c 2 1 F'(c) \; =\; \frac{c}{(c+1)\sqrt{2c^2-1}} - \frac{1 + \sqrt{2c^2-1}}{2(c+1)^2} \; = \; \frac{1}{2(c+1)^2\sqrt{2c^2-1}}\Big[2c(c+1) - \sqrt{2c^2-1}\big(1+\sqrt{2c^2-1}\big)\Big] \; =\; \frac{1 + 2c - \sqrt{2c^2-1}}{2(c+1)^2\sqrt{2c^2-1}} is positive for 1 2 c 1 \tfrac{1}{\sqrt{2}} \le c \le 1 , and hence the maximum value of F ( c ) F(c) is F ( 1 ) F(1) . Thus the least possible value of λ \lambda is F ( 1 ) = 1 2 F(1) = \boxed{\tfrac12} .

What if we consider n n variables? a 1 + a 2 + + a n n λ a 1 a 2 a n n + ( 1 λ ) a 1 2 + a 2 2 + + a n 2 n \frac{a_1+a_2+\cdots+a_n}n\ge\lambda\sqrt[n]{a_1a_2\cdots a_n}+(1-\lambda)\sqrt\frac{a_1^2+a_2^2+\cdots+a_n^2}n

Brian Lie - 2 months, 2 weeks ago
Elijah L
Mar 29, 2021

Very cool elementary inequalities problem!

We claim that λ = 0.5 \boxed{\lambda = 0.5} is the smallest possible value. This is easily verifiable to work, as follows:

a + b 2 ? 1 2 ( a b + a 2 + b 2 2 ) a + b ? a b + a 2 + b 2 2 \begin{aligned} \frac{a+b}{2} &\stackrel{?}{\ge} \frac 1 2 \left( \sqrt{ab} + \sqrt{\frac{a^2+b^2}{2}}\right)\\ a+b &\stackrel{?}{\ge} \sqrt{ab} + \sqrt{\frac{a^2+b^2}{2}}\\ \end{aligned}

But this is true by RMS-AM:

a b 2 + a 2 + b 2 2 2 2 a b + a 2 + b 2 2 2 a b + a 2 + b 2 2 2 a b + a 2 + b 2 2 2 ( a 2 + 2 a b + b 2 ) 2 2 a b + a 2 + b 2 2 2 ( a + b 2 ) 2 a b + a 2 + b 2 2 2 a + b a b + a 2 + b 2 2 \begin{aligned} \sqrt{\frac{\sqrt{ab}^2 + \sqrt{\frac{a^2+b^2}{2}}}{2}^2} &\ge \frac{\sqrt{ab} + \sqrt{\frac{a^2+b^2}{2}}}{2}\\ \sqrt{\frac{ab + \frac{a^2+b^2}{2} }{2}} &\ge \frac{\sqrt{ab} + \sqrt{\frac{a^2+b^2}{2}}}{2}\\ \sqrt{\frac{\frac{(a^2+2ab+b^2)}{2} }{2}} &\ge \frac{\sqrt{ab} + \sqrt{\frac{a^2+b^2}{2}}}{2}\\ \sqrt{\left(\frac{a+b}{2}\right)^2} &\ge \frac{\sqrt{ab} + \sqrt{\frac{a^2+b^2}{2}}}{2}\\ a+b &\ge \sqrt{ab} + \sqrt{\frac{a^2+b^2}{2}} \blacksquare \end{aligned}

Now we must show that any smaller λ \lambda will not work. Note that the equation is AM λ ( GM ) + ( 1 λ ) ( RMS ) \text{AM} \ge \lambda (\text{GM}) + (1-\lambda)(\text{RMS}) . It is known that AM GM \text{AM} \ge \text{GM} , and RMS AM \text{RMS} \ge \text{AM} . So for any smaller λ \lambda , the pair a = 1 a = 1 and b = lim x 0 1 + x b = \displaystyle \lim_{x \rightarrow 0}{1+x} will not satisfy the inequality for sufficiently small x x for each constant λ \lambda . This can be verified through direct computation.

Kushal Dey
Jun 7, 2021

(x-y)²>=0
=> (x+y)²+(x-y)²>=(x+y)²
=>2(x²+y²)>=(x+y)²
=> x ² + y ² 2 \frac {x²+y²}{2} >= ( x + y ) ² 4 \frac {(x+y)²}{4}
=> x ² + y ² 2 \sqrt{\frac {x²+y²}{2}} >= x + y 2 \frac {x+y}{2}
Put x= a ² + b ² 2 \sqrt{\frac {a²+b²}{2}} ,y= a b \sqrt{ab} and we have our result.




ChengYiin Ong
May 12, 2021

Notice that we can write λ a 2 + b 2 2 a + b 2 a 2 + b 2 2 a b = 1 2 a 2 + b 2 2 + a b a 2 + b 2 2 + a + b 2 \lambda \geqslant \frac{\sqrt{\frac{a^2+b^2}{2}}-\frac{a+b}{2}}{\sqrt{\frac{a^2+b^2}{2}}-\sqrt{ab}}=\frac{1}{2} \cdot \frac{\sqrt{\frac{a^2+b^2}{2}}+\sqrt{ab}}{\sqrt{\frac{a^2+b^2}{2}}+\frac{a+b}{2}} setting a = b = 1 a=b=1 , we get λ 1 2 \lambda \geqslant \frac{1}{2} . When λ = 1 2 \lambda =\frac{1}{2} , it's just QM-AM Inequality. \quad \blacksquare

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...