Turning Point

Algebra Level 4

Given that the turning point of the curve y = x 2 + p x + q q 2 y=-x^2+px+q-q^2 lies on another curve y = 4 x 2 + 4 x + 19 12 y=4x^2+4x+\frac{19}{12} , find the value of 2 q 3 p 2q-3p .


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tom Engelsman
Dec 7, 2019

If we complete the square on the first parabola, we obtain y = x 2 + p x + q q 2 = ( x p / 2 ) 2 + ( p 2 4 q 2 + q ) y = -x^2 + px + q - q^2 = -(x - p/2)^2 + (\frac{p^2}{4} - q^2 + q) with a vertex of ( p 2 , p 2 4 q 2 + q ) . (\frac{p}{2}, \frac{p^2}{4} - q^2 + q). If we next substitute this point into the second parabola, one obtains:

p 2 4 q 2 + q = 4 ( p 2 ) 2 + 4 ( p 2 ) + 19 12 \frac{p^2}{4} - q^2 + q = 4(\frac{p}{2})^2 + 4(\frac{p}{2}) + \frac{19}{12} ;

or 3 p 2 12 q 2 + 12 q = 12 p 2 + 24 p + 19 ; 3p^2 - 12q^2 + 12q = 12p^2 + 24p + 19;

or 0 = 9 p 2 + 24 p + ( 12 q 2 12 q + 19 ) ; 0 = 9p^2 + 24p + (12q^2 - 12q + 19);

or p = 24 ± 2 4 2 4 ( 9 ) ( 12 q 2 12 q + 19 ) 18 ; p = \frac{-24 \pm \sqrt{24^2 - 4(9)(12q^2 - 12q + 19)}}{18};

or p = 24 ± 6 16 12 q 2 + 12 q 19 18 ; p = \frac{-24 \pm 6\sqrt{16 - 12q^2 + 12q - 19}}{18};

or p = 4 ± 12 q 2 + 12 q 3 3 ; p = \frac{-4 \pm \sqrt{-12q^2 + 12q -3}}{3};

or p = 4 ± 3 ( 4 q 2 4 q + 1 ) 3 ; p = \frac{-4 \pm \sqrt{-3(4q^2 - 4q +1)}}{3};

or p = 4 ± 3 ( 2 q 1 ) 2 3 ; p = \frac{-4 \pm \sqrt{-3(2q-1)^2}}{3};

or p = 4 ± ( 2 q 1 ) 3 i 3 . p = \frac{-4 \pm (2q-1)\sqrt{3}i}{3}.

Since we require p , q R p,q \in \mathbb{R} , this yields the pair p = 4 3 , q = 1 2 . p = -\frac{4}{3}, q = \frac{1}{2}. Hence, 2 q 3 p = 2 ( 1 2 ) 3 ( 4 3 ) = 1 + 4 = 5 . 2q-3p = 2(\frac{1}{2}) - 3(-\frac{4}{3}) = 1 + 4 = \boxed{5}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...