Given that the turning point of the curve lies on another curve , find the value of .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
If we complete the square on the first parabola, we obtain y = − x 2 + p x + q − q 2 = − ( x − p / 2 ) 2 + ( 4 p 2 − q 2 + q ) with a vertex of ( 2 p , 4 p 2 − q 2 + q ) . If we next substitute this point into the second parabola, one obtains:
4 p 2 − q 2 + q = 4 ( 2 p ) 2 + 4 ( 2 p ) + 1 2 1 9 ;
or 3 p 2 − 1 2 q 2 + 1 2 q = 1 2 p 2 + 2 4 p + 1 9 ;
or 0 = 9 p 2 + 2 4 p + ( 1 2 q 2 − 1 2 q + 1 9 ) ;
or p = 1 8 − 2 4 ± 2 4 2 − 4 ( 9 ) ( 1 2 q 2 − 1 2 q + 1 9 ) ;
or p = 1 8 − 2 4 ± 6 1 6 − 1 2 q 2 + 1 2 q − 1 9 ;
or p = 3 − 4 ± − 1 2 q 2 + 1 2 q − 3 ;
or p = 3 − 4 ± − 3 ( 4 q 2 − 4 q + 1 ) ;
or p = 3 − 4 ± − 3 ( 2 q − 1 ) 2 ;
or p = 3 − 4 ± ( 2 q − 1 ) 3 i .
Since we require p , q ∈ R , this yields the pair p = − 3 4 , q = 2 1 . Hence, 2 q − 3 p = 2 ( 2 1 ) − 3 ( − 3 4 ) = 1 + 4 = 5 .