So Simple,,,,,.....

Algebra Level 2

If a + b + c = 9 a+b+c = 9 and a b + b c + c a = 26 ab+bc+ca = 26 , then what is the value of

a 3 + b 3 + c 3 3 a b c ? a^3+b^3+c^3 - 3abc ?

29 729 27 495

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tom Engelsman
Sep 1, 2017

Let's cube the first equation out and simplify from there:

( a + b + c ) 3 = 9 3 ; (a+b+c)^3 = 9^3;

or ( a + b ) 3 + 3 ( a + b ) 2 c + 3 ( a + b ) c 2 + c 3 = 729 ; (a+b)^3 + 3(a+b)^{2}c + 3(a+b)c^2 + c^3 = 729;

or ( a 3 + 3 a 2 b + 3 a b 2 + b 3 ) + 3 ( a 2 + 2 a b + b 2 ) c + 3 ( a + b ) c 2 + c 3 = 729 ; (a^3 + 3a^{2}b + 3ab^2 + b^3) + 3(a^2 + 2ab + b^2)c + 3(a+b)c^2 + c^3 = 729;

or ( a 3 + b 3 + c 3 ) + 3 a b ( a + b ) + 3 a c ( a + c ) + 3 b c ( b + c ) + 6 a b c = 729 ; (a^3 + b^3 + c^3) + 3ab(a+b) + 3ac(a+c) + 3bc(b+c) + 6abc = 729;

or ( a 3 + b 3 + c 3 ) + 3 a b ( 9 c ) + 3 a c ( 9 b ) + 3 b c ( 9 a ) + 6 a b c = 729 ; (a^3 + b^3 + c^3) + 3ab(9-c) + 3ac(9-b) + 3bc(9-a) + 6abc = 729;

or ( a 3 + b 3 + c 3 ) + 27 ( a b + a c + b c ) 9 a b c + 6 a b c = 729 ; (a^3 + b^3 + c^3) + 27(ab + ac + bc) - 9abc + 6abc = 729;

or ( a 3 + b 3 + c 3 ) + 27 ( 26 ) 3 a b c = 729 ; (a^3 + b^3 + c^3) + 27(26) - 3abc = 729;

or ( a 3 + b 3 + c 3 ) 3 a b c = 729 ( 26 ) ( 27 ) = 27 . (a^3 + b^3 + c^3) - 3abc = 729 - (26)(27) = \boxed{27}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...