Twisted Coefficients

If C 0 , C 1 , , C 2016 C_{0},C_{1},\ldots,C_{2016} denote the coefficients in the expansion of ( 1 + x ) 2016 (1+x)^{2016} .Evaluate n = 1 2016 n C n C n 1 . \large \sum_{n=1}^{2016} \dfrac{nC_{n}}{C_{n-1}}~.


The answer is 2033136.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Shanthanu Rai
Apr 3, 2016

n C n C n 1 \dfrac{nC_n}{C_n-1} = 2017 n 2017 - n
n = 1 2016 n C n C n 1 = n = 1 2016 2017 n \implies \hspace{0.1cm} \sum_{n=1}^{2016} \dfrac{nC_n}{C_n-1}=\sum_{n=1}^{2016} 2017 - n
= ( 2016 ) ( 2017 ) 2 \frac{(2016)(2017)}{2} = 2033136 \boxed{2033136}

S = n = 1 2016 n C n C n 1 = n × 2016 ! n ! ( 2016 n ) ! 2016 ! ( n 1 ) ! ( 2016 n + 1 ) ! = n = 1 2016 n ( 2016 ! ) ( n 1 ) ! ( 2017 n ) ! 2016 ! ( n ! ) ( 2016 n ) ! = n = 1 2016 ( 2017 n ) = n = 1 2016 n = 2016 × 2017 2 = 2033136 \begin{aligned} S & = \sum_{n=1}^{2016} \frac{nC_n}{C_{n-1}} = \frac{n \times \frac{2016!}{n!(2016-n)!}}{\frac{2016!}{(n-1)!(2016-n+1)!}} = \sum_{n=1}^{2016} \frac{n(2016!)(n-1)!(2017-n)!}{2016!(n!)(2016-n)!} \\ & = \sum_{n=1}^{2016} (2017-n) = \sum_{n=1}^{2016} n = \frac{2016 \times 2017}{2} = \boxed{2033136} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...