Tweaking an easy problem

Algebra Level 5

f ( p , q ) = i = 0 ( 1 + 1 q p i ) f(p,q)=\displaystyle\prod_{i=0}^{\infty} \left (1+\frac{1}{q^{p^i}}\right )


If n = 2 ϕ 1 n ϕ 2 n ϕ 1 2 n + ϕ 2 2 n ϕ 2 n 1 ϕ 1 n 1 ( ϕ 2 2 + ϕ 1 2 ) = a b \displaystyle\sum_{n=2}^{\infty} \frac{\phi_1^n-\phi_2^n}{\phi_1^{2n}+\phi_2^{2n}-\phi_2^{n-1}\phi_1^{n-1}(\phi_2^2+\phi_1^2)}=\frac{a}{\sqrt{b}} where b b is square free, and f ( a , b ) = α β f(a,b)=\frac{\alpha}{\beta} , calculate α + β \alpha+\beta .


Details and Assumptions

  • ϕ 1 \phi_1 is Golden Ratio which equals 1 + 5 2 \frac{1+\sqrt{5}}{2}

  • ϕ 1 ϕ 2 + 1 = 0 \phi_1\phi_2+1=0


The answer is 9.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tijmen Veltman
Apr 22, 2015

Define g ( n ) : = ϕ 1 n ϕ 2 n g(n):=\phi_1^n-\phi_2^n . These functions have a nice Fibonacci-like property:

g ( n 1 ) + g ( n ) = ϕ 1 n 1 ϕ 2 n 1 + ϕ 1 n ϕ 2 n = ϕ 1 n 1 ( ϕ 1 + 1 ) ϕ 2 n 1 ( ϕ 2 + 1 ) g(n-1)+g(n) =\phi_1^{n-1}-\phi_2^{n-1}+\phi_1^n-\phi_2^n\\ =\phi_1^{n-1}(\phi_1+1)-\phi_2^{n-1}(\phi_2+1)

= ϕ 1 n 1 ϕ 1 2 ϕ 2 n 1 ϕ 2 2 = ϕ 1 n + 1 ϕ 2 n + 1 = g ( n + 1 ) . =\phi_1^{n-1}\phi_1^2-\phi_2^{n-1}\phi_2^2\\ =\phi_1^{n+1}-\phi_2^{n+1}\\ =g(n+1).

This allows us to write:

n = 2 ϕ 1 n ϕ 2 n ϕ 1 2 n + ϕ 2 2 n ϕ 2 n 1 ϕ 1 n 1 ( ϕ 2 2 + ϕ 1 2 ) = n = 2 ϕ 1 n ϕ 2 n ( ϕ 1 n + 1 ϕ 2 n + 1 ) ( ϕ 1 n 1 ϕ 2 n 1 ) \sum_{n=2}^\infty \frac{\phi_1^n-\phi_2^n}{\phi_1^{2n}+\phi_2^{2n}-\phi_2^{n-1}\phi_1^{n-1}(\phi_2^2+\phi_1^2)}\\ =\sum_{n=2}^\infty \frac{\phi_1^n-\phi_2^n}{(\phi_1^{n+1}-\phi_2^{n+1}) (\phi_1^{n-1}-\phi_2^{n-1})} = n = 2 g ( n ) g ( n 1 ) g ( n + 1 ) = n = 2 g ( n + 1 ) g ( n 1 ) g ( n 1 ) g ( n + 1 ) = n = 2 1 g ( n 1 ) 1 g ( n + 1 ) =\sum_{n=2}^\infty \frac{g(n)}{g(n-1)g(n+1)}\\ =\sum_{n=2}^\infty \frac{g(n+1)-g(n-1)}{g(n-1)g(n+1)}\\ =\sum_{n=2}^\infty \frac1{g(n-1)}-\frac1{g(n+1)} which telescopes into 1 g ( 1 ) + 1 g ( 2 ) = 1 5 + 1 5 = 2 5 \frac1{g(1)}+\frac1{g(2)}=\frac1{\sqrt5}+\frac1{\sqrt5}=\frac2{\sqrt5} , giving us a = 2 a=2 and b = 5 b=5 .

The second part of the exercise is to analyse f f ; in this case, we have:

f ( 2 , 5 ) = i = 0 ( 1 + 1 5 2 i ) . f(2,5)=\prod_{i=0}^\infty \left(1+\frac1{5^{2^i}}\right).

Observe that:

( 1 1 5 ) f ( 2 , 5 ) = ( 1 1 5 ) ( 1 + 1 5 ) ( 1 + 1 5 2 ) ( 1 + 1 5 4 ) ( 1 + 1 5 8 ) \left(1-\frac15\right)f(2,5) =\left(1-\frac15\right)\left(1+\frac15\right) \left(1+\frac1{5^2}\right) \left(1+\frac1{5^4}\right)\left(1+\frac1{5^8}\right)\dots

= ( 1 1 5 2 ) ( 1 + 1 5 2 ) ( 1 + 1 5 4 ) ( 1 + 1 5 8 ) =\left(1-\frac1{5^2}\right) \left(1+\frac1{5^2}\right) \left(1+\frac1{5^4}\right)\left(1+\frac1{5^8}\right)\dots

= ( 1 1 5 4 ) ( 1 + 1 5 4 ) ( 1 + 1 5 8 ) =\left(1-\frac1{5^4}\right)\left(1+\frac1{5^4}\right)\left(1+\frac1{5^8}\right)\dots

\vdots

= 1 =1 ,

seeing as we get 1 1 5 2 n 1-\frac1{5^{2^n}} with steadily increasing n n , which converges to 1 1 . Hence f ( 2 , 5 ) = 1 1 1 5 = 5 4 f(2,5)=\frac1{1-\frac15}=\frac54 , therefore the answer is α + β = 5 + 4 = 9 \alpha+\beta=5+4=\boxed{9} .

Perfect!

Pranjal Jain - 6 years, 1 month ago

Thanks for Solution @Tijmen Veltman

Karan Shekhawat - 6 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...