f ( p , q ) = i = 0 ∏ ∞ ( 1 + q p i 1 )
If n = 2 ∑ ∞ ϕ 1 2 n + ϕ 2 2 n − ϕ 2 n − 1 ϕ 1 n − 1 ( ϕ 2 2 + ϕ 1 2 ) ϕ 1 n − ϕ 2 n = b a where b is square free, and f ( a , b ) = β α , calculate α + β .
Details and Assumptions
ϕ 1 is Golden Ratio which equals 2 1 + 5
ϕ 1 ϕ 2 + 1 = 0
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Perfect!
Thanks for Solution @Tijmen Veltman
Problem Loading...
Note Loading...
Set Loading...
Define g ( n ) : = ϕ 1 n − ϕ 2 n . These functions have a nice Fibonacci-like property:
g ( n − 1 ) + g ( n ) = ϕ 1 n − 1 − ϕ 2 n − 1 + ϕ 1 n − ϕ 2 n = ϕ 1 n − 1 ( ϕ 1 + 1 ) − ϕ 2 n − 1 ( ϕ 2 + 1 )
= ϕ 1 n − 1 ϕ 1 2 − ϕ 2 n − 1 ϕ 2 2 = ϕ 1 n + 1 − ϕ 2 n + 1 = g ( n + 1 ) .
This allows us to write:
∑ n = 2 ∞ ϕ 1 2 n + ϕ 2 2 n − ϕ 2 n − 1 ϕ 1 n − 1 ( ϕ 2 2 + ϕ 1 2 ) ϕ 1 n − ϕ 2 n = ∑ n = 2 ∞ ( ϕ 1 n + 1 − ϕ 2 n + 1 ) ( ϕ 1 n − 1 − ϕ 2 n − 1 ) ϕ 1 n − ϕ 2 n = ∑ n = 2 ∞ g ( n − 1 ) g ( n + 1 ) g ( n ) = ∑ n = 2 ∞ g ( n − 1 ) g ( n + 1 ) g ( n + 1 ) − g ( n − 1 ) = ∑ n = 2 ∞ g ( n − 1 ) 1 − g ( n + 1 ) 1 which telescopes into g ( 1 ) 1 + g ( 2 ) 1 = 5 1 + 5 1 = 5 2 , giving us a = 2 and b = 5 .
The second part of the exercise is to analyse f ; in this case, we have:
f ( 2 , 5 ) = ∏ i = 0 ∞ ( 1 + 5 2 i 1 ) .
Observe that:
( 1 − 5 1 ) f ( 2 , 5 ) = ( 1 − 5 1 ) ( 1 + 5 1 ) ( 1 + 5 2 1 ) ( 1 + 5 4 1 ) ( 1 + 5 8 1 ) …
= ( 1 − 5 2 1 ) ( 1 + 5 2 1 ) ( 1 + 5 4 1 ) ( 1 + 5 8 1 ) …
= ( 1 − 5 4 1 ) ( 1 + 5 4 1 ) ( 1 + 5 8 1 ) …
⋮
= 1 ,
seeing as we get 1 − 5 2 n 1 with steadily increasing n , which converges to 1 . Hence f ( 2 , 5 ) = 1 − 5 1 1 = 4 5 , therefore the answer is α + β = 5 + 4 = 9 .