Tweaking radicals

Algebra Level 2

2 x 4 3 x 2 x + 4 3 x = 6 5 x 8 7 x 6 5 x + 8 7 x , x = ? \large \dfrac{\sqrt{2-x} - \sqrt{4-3x}}{\sqrt{2-x} + \sqrt{4-3x}} = \dfrac{\sqrt{6-5x} - \sqrt{8-7x}}{\sqrt{6-5x} + \sqrt{8-7x}} \quad,\quad x = \ ?

3 2 4 1

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Rohit Udaiwal
Sep 27, 2015

Use componendo-dividendo to get : 2 x 4 3 x = 6 5 x 8 7 x Square both sides and cross multiply ( 4 3 x ) ( 6 5 x ) = ( 2 x ) ( 8 7 x ) 24 20 x 18 x + 15 x 2 = 16 14 x 8 x + 7 x 2 24 38 x + 15 x 2 16 + 22 x 7 x 2 = 0 8 x 2 16 x + 8 = 0 8 ( x 2 2 x + 1 ) = 0 x 2 2 x + 1 = 0 ( x 1 ) 2 = 0 x = 1 \color{#3D99F6}{\sqrt {\frac {2-x}{4-3x}}=\sqrt {\frac {6-5x}{8-7x}}} \\ \text {Square both sides and cross multiply} \\ (4-3x)(6-5x)=(2-x)(8-7x) \\ \Rightarrow{24-20x-18x+15x^{2}=16-14x-8x+7x^{2}} \\ \Rightarrow{24-38x+15x^{2}-16+22x-7x^{2}=0} \\ \Rightarrow{8x^{2}-16x+8=0} \\ \Rightarrow{8 (x^{2}-2x+1)=0} \\ \Rightarrow{x^{2}-2x+1=0} \\ \Rightarrow{(x-1)^{2}=0} \\ \color{#20A900}{\Rightarrow{x=1}}

Sam Maltia
Oct 18, 2015

All the rest of the solutions in one way or another give you an imaginary solution; therefore, the answer has to be 1.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...