Twelve? Ain't Nobody got time for that! Part 2

Calculus Level 5

0 1 x 12 + 1 d x = π ( a + b ) c \large \displaystyle \int_0^\infty \frac {1}{x^{12} + 1} \mathrm{d}x = \frac{ \pi (\sqrt{a} + \sqrt{b} )}{c}

If the equation above is satisfied for positive integers a , b a,b and c c , what is the smallest value of a + b + c a+b+c ?


The answer is 20.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Pranav Arora
May 17, 2014

Use the substitution x 12 = t d x = 1 12 t 11 / 12 d t x^{12}=t \Rightarrow dx=\frac{1}{12}t^{-11/12}\,dt to obtain:

0 d x x 12 + 1 = 1 12 0 t 11 / 12 t + 1 d t \int_0^{\infty} \frac{dx}{x^{12}+1}=\frac{1}{12}\int_0^{\infty} \frac{t^{-11/12}}{t+1}\,dt


Now I prove the following result:

0 x a x + 1 d x = π sin ( π a ) \int_0^\infty \dfrac{x^{-a}}{x+1}\mathrm{d}x=\frac{\pi}{\sin(\pi a)}

Write the integral as:

0 0 x a e ( x + 1 ) t d t d x = 0 ( 0 x a e x t d x ) e t d t \displaystyle \int_0^{\infty} \int_0^{\infty} x^{-a} e^{-(x+1)t}\,dt\,dx=\int_0^{\infty} \left(\int_0^{\infty} x^{-a}e^{-xt}\,dx\right) e^{-t}\,dt

First I evaluate:

0 x a e x t d x \displaystyle \int_0^{\infty} x^{-a}e^{-xt}\,dx

Use the substitution x t = y xt=y to obtain:

1 t a + 1 0 y a e y d y = 1 t 1 a Γ ( 1 a ) \frac{1}{t^{-a+1}} \int_0^{\infty} y^{-a} e^{-y}\,dy=\frac{1}{t^{1-a}}\Gamma(1-a)

Hence,

0 ( 0 x a e x t d x ) e t d t = Γ ( 1 a ) 0 t a 1 e t d t = Γ ( 1 a ) Γ ( a ) \int_0^{\infty} \left(\int_0^{\infty} x^{-a}e^{-xt}\,dx\right) e^{-t}\,dt=\Gamma(1-a)\int_0^{\infty} t^{a-1}e^{-t}\,dt=\Gamma(1-a)\Gamma(a)

....which is by Euler's reflection formula:

Γ ( 1 a ) Γ ( a ) = π sin ( π a ) \Gamma(1-a)\Gamma(a)=\frac{\pi}{\sin(\pi a)}


Hence,

1 12 0 t 11 / 12 t + 1 d t = π 12 sin ( π / 12 ) \frac{1}{12}\int_0^{\infty} \frac{t^{-11/12}}{t+1}\,dt= \frac{\pi}{12\sin(\pi/12)}

Since sin ( π / 12 ) = 3 1 2 2 \sin(\pi/12)=\frac{\sqrt{3}-1}{2\sqrt{2}} , the final answer is:

π ( 6 + 2 ) 12 \boxed{\dfrac{\pi (\sqrt{6}+\sqrt{2})}{12}}

Excellent solution! I missed a step and kept getting 13. :O

Finn Hulse - 7 years ago

Another way & also to generalize the method, we can use substitution y = 1 1 + x n \displaystyle y=\frac{1}{1+x^n} and the integral becomes Beta function 1 n 0 1 y 1 1 n 1 ( 1 y ) 1 n 1 d y = Γ ( 1 1 n ) Γ ( 1 n ) n = π n sin π n \frac{1}{n}\int_0^1 y^{\large 1-\frac{1}{n}-1}\ (1-y)^{\large \frac{1}{n}-1}\,dy=\frac{\Gamma\left(1-\frac{1}{n}\right)\Gamma\left(\frac{1}{n}\right)}{n}=\frac{\pi}{n\sin\frac{\pi}{n}} Try this one (click the problem):

0 π 4 [ ( 1 x 2 ) ln ( 1 + x 2 ) + ( 1 + x 2 ) ( 1 x 2 ) ln ( 1 x 2 ) ( 1 x 4 ) ( 1 + x 2 ) ] x exp [ x 2 1 x 2 + 1 ] d x \int_0^{\Large\frac{\pi}{4}}\left[\frac{(1-x^2)\ln(1+x^2)+(1+x^2)-(1-x^2)\ln(1-x^2)}{(1-x^4)(1+x^2)}\right] x\, \exp\left[\frac{x^2-1}{x^2+1}\right]\, dx .

Harsh Shrivastava
Feb 16, 2016

Alternative approach:

Substitute x = ( tan y ) 1 / 12 (\tan y)^{1/12}

then the integral will transform into trignometric form of Beta function.

Chew-Seong Cheong
Sep 10, 2018

Relevant wiki: Gamma Function

I = 0 1 1 + x 12 d x Let u = x 12 d u = 12 x 11 d x = 1 12 0 u 11 12 1 + u d u Beta function B ( m , n ) = 0 u m 1 ( 1 + u ) m + n d u = 1 12 B ( 1 12 , 11 12 ) B ( m , n ) = Γ ( m ) Γ ( n ) Γ ( m + n ) , where Γ ( ) is gamma function. = Γ ( 1 12 ) Γ ( 11 12 ) 12 Γ ( 1 ) Γ ( x ) Γ ( 1 x ) = π sin ( π x ) = π sin π 12 12 0 ! Γ ( n ) = ( n 1 ) ! = π ( 2 + 6 ) 12 \begin{aligned} I & = \int_0^\infty \frac 1{1+x^{12}}dx & \small \color{#3D99F6} \text{Let }u = x^{12} \implies du = 12 x^{11} dx \\ & = \frac 1{12} \int_0^\infty \frac {u^{-\frac {11}{12}}}{1+u} du & \small \color{#3D99F6} \text{Beta function }B(m,n) = \int_0^\infty \frac {u^{m-1}}{(1+u)^{m+n}} du \\ & = \frac 1{12} B \left(\frac 1{12}, \frac {11}{12} \right) & \small \color{#3D99F6} B(m,n) = \frac {\Gamma (m)\Gamma(n)}{\Gamma(m+n)} \text{, where }\Gamma (\cdot) \text{ is gamma function.} \\ & = \frac {\color{#3D99F6}\Gamma\left(\frac 1{12}\right)\Gamma\left(\frac {11}{12}\right)}{12 \color{#D61F06}\Gamma(1)} & \small \color{#3D99F6} \Gamma (x) \Gamma(1-x) = \frac \pi{\sin (\pi x)} \\ & = \frac {\color{#3D99F6}\frac \pi{\sin \frac \pi{12}}}{12 \cdot \color{#D61F06}0!} & \small \color{#D61F06} \Gamma (n) = (n-1)! \\ & = \frac {\pi(\sqrt 2+\sqrt 6)}{12} \end{aligned}

Therefore, a + b + c = 2 + 6 + 12 = 20 a+b+c = 2+6+12 = \boxed{20} .

Nikola Djuric
Feb 16, 2016

(x¹²+1)=((x⁴)³+1³)=(x⁴+1)(x^8-x⁴+1)=
(x⁴+1)(x⁴+√3x²+1)(x⁴-√3x²+1)
Now is easy 1/(x¹²+1)=
(ax³+bx²+cx+d)/(x⁴+1)+
(ex³+fx²+gx+h)/(x⁴+√3x²+1)+
(ix³+jx²+kx+l)/(x⁴-√3x²+1)
Now just solve that system and we get
a=b=c=e=g=i=k=0 , h=l=1/3,
f=-j=1/(2√3)
Now is easier
X⁴+1=(x²+x√2+1)(x²-x√2+1)
x⁴-√3x²+1=(x²+1)²-(bx)²=(x²-Bx+1)(x²+bx+1), where B=(1+√3)/√2
x⁴+√3x²+1=(x²-Ax+1)(x²+Ax+1) where A=(√3-1)/√2
Now is easy...






How did you know that

a=b=c=e=g=i=k=0 , h=l=1/3, f=-j=1/(2√3)

is true? Did you expand everything and simplify? That requires a lot of work.

Pi Han Goh - 5 years, 3 months ago

Log in to reply

Yes,i've done it,that's few minutes of work...

Nikola Djuric - 5 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...