∫ 0 ∞ x 1 2 + 1 1 d x = c π ( a + b )
If the equation above is satisfied for positive integers a , b and c , what is the smallest value of a + b + c ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Excellent solution! I missed a step and kept getting 13. :O
Another way & also to generalize the method, we can use substitution y = 1 + x n 1 and the integral becomes Beta function n 1 ∫ 0 1 y 1 − n 1 − 1 ( 1 − y ) n 1 − 1 d y = n Γ ( 1 − n 1 ) Γ ( n 1 ) = n sin n π π Try this one (click the problem):
Alternative approach:
Substitute x = ( tan y ) 1 / 1 2
then the integral will transform into trignometric form of Beta function.
Relevant wiki: Gamma Function
I = ∫ 0 ∞ 1 + x 1 2 1 d x = 1 2 1 ∫ 0 ∞ 1 + u u − 1 2 1 1 d u = 1 2 1 B ( 1 2 1 , 1 2 1 1 ) = 1 2 Γ ( 1 ) Γ ( 1 2 1 ) Γ ( 1 2 1 1 ) = 1 2 ⋅ 0 ! sin 1 2 π π = 1 2 π ( 2 + 6 ) Let u = x 1 2 ⟹ d u = 1 2 x 1 1 d x Beta function B ( m , n ) = ∫ 0 ∞ ( 1 + u ) m + n u m − 1 d u B ( m , n ) = Γ ( m + n ) Γ ( m ) Γ ( n ) , where Γ ( ⋅ ) is gamma function. Γ ( x ) Γ ( 1 − x ) = sin ( π x ) π Γ ( n ) = ( n − 1 ) !
Therefore, a + b + c = 2 + 6 + 1 2 = 2 0 .
(x¹²+1)=((x⁴)³+1³)=(x⁴+1)(x^8-x⁴+1)=
(x⁴+1)(x⁴+√3x²+1)(x⁴-√3x²+1)
Now is easy 1/(x¹²+1)=
(ax³+bx²+cx+d)/(x⁴+1)+
(ex³+fx²+gx+h)/(x⁴+√3x²+1)+
(ix³+jx²+kx+l)/(x⁴-√3x²+1)
Now just solve that system and we get
a=b=c=e=g=i=k=0 , h=l=1/3,
f=-j=1/(2√3)
Now is easier
X⁴+1=(x²+x√2+1)(x²-x√2+1)
x⁴-√3x²+1=(x²+1)²-(bx)²=(x²-Bx+1)(x²+bx+1), where B=(1+√3)/√2
x⁴+√3x²+1=(x²-Ax+1)(x²+Ax+1) where A=(√3-1)/√2
Now is easy...
How did you know that
a=b=c=e=g=i=k=0 , h=l=1/3, f=-j=1/(2√3)
is true? Did you expand everything and simplify? That requires a lot of work.
Log in to reply
Yes,i've done it,that's few minutes of work...
Problem Loading...
Note Loading...
Set Loading...
Use the substitution x 1 2 = t ⇒ d x = 1 2 1 t − 1 1 / 1 2 d t to obtain:
∫ 0 ∞ x 1 2 + 1 d x = 1 2 1 ∫ 0 ∞ t + 1 t − 1 1 / 1 2 d t
Now I prove the following result:
∫ 0 ∞ x + 1 x − a d x = sin ( π a ) π
Write the integral as:
∫ 0 ∞ ∫ 0 ∞ x − a e − ( x + 1 ) t d t d x = ∫ 0 ∞ ( ∫ 0 ∞ x − a e − x t d x ) e − t d t
First I evaluate:
∫ 0 ∞ x − a e − x t d x
Use the substitution x t = y to obtain:
t − a + 1 1 ∫ 0 ∞ y − a e − y d y = t 1 − a 1 Γ ( 1 − a )
Hence,
∫ 0 ∞ ( ∫ 0 ∞ x − a e − x t d x ) e − t d t = Γ ( 1 − a ) ∫ 0 ∞ t a − 1 e − t d t = Γ ( 1 − a ) Γ ( a )
....which is by Euler's reflection formula:
Γ ( 1 − a ) Γ ( a ) = sin ( π a ) π
Hence,
1 2 1 ∫ 0 ∞ t + 1 t − 1 1 / 1 2 d t = 1 2 sin ( π / 1 2 ) π
Since sin ( π / 1 2 ) = 2 2 3 − 1 , the final answer is:
1 2 π ( 6 + 2 )