Twisted Nested Radicals!

Calculus Level 1

P = 2 2 2 2 2 5 4 3 2 \Large{P= 2 \sqrt[2]{2 \sqrt[3]{2 \sqrt[4]{2 \sqrt[5]{2 \cdots}}}} }

If P = A e B P= \large \dfrac{A^e}{B} for positive integers A A and B , B, what is A + B ? A+B?


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Akshat Sharda
Sep 21, 2015

P = 2 2 2 2 2 5 4 3 P=2\sqrt{2\sqrt[3] {2\sqrt[4]{2\sqrt[5] {2\cdots}}}}

The above expression can be rewritten as ,

= 2 ( 2 ( 2 ( 2 ( 2... ) 1 5 ) 1 4 ) 1 3 ) 1 2 =2(2(2(2(2...)^{\frac{1}{5}})^{\frac{1}{4}})^{\frac{1}{3}})^{\frac{1}{2}}

= 2 2 1 2 2 1 6 2 1 24 2 1 120 . . . =2\cdot 2^{\frac{1}{2}}\cdot 2^{\frac{1}{6}}\cdot 2^{\frac{1}{24}}\cdot 2^{\frac{1}{120}}...

= 2 1 + 1 2 ! + 1 3 ! + 1 4 ! + 1 5 ! + =2^{1+\frac{1} {2!}+\frac{1}{3!}+\frac{1} {4!}+\frac{1}{5!}+\cdots}

= 2 e 1 = 2 e 2 =2^{e-1}=\frac{2^{e}}{2}

2 + 2 = 4 \Rightarrow 2+2=\boxed{4}

Really nice solution!

Adarsh Kumar - 5 years, 8 months ago

good work, but why: 1+(1/2)+ (1/2*3)+...=e-1 can u derive it

who ting - 5 years, 8 months ago

Log in to reply

= 2 ( 2 ( 2 ( 2 ( 2... ) 1 5 ) 1 4 ) 1 3 ) 1 2 =2(2(2(2(2...)^{\frac{1} {5}})^{\frac{1}{4}})^{\frac{1} {3}})^{\frac{1}{2}}

= 2 2 1 2 ( 2 ( 2 ( 2... ) 1 5 ) 1 4 ) 1 6 =2 \cdot 2^{\frac{1}{2}}(2(2(2...)^{\frac{1} {5}})^{\frac{1}{4}})^{\frac{1} {6}}

= 2 2 1 2 2 1 6 ( 2 ( 2... ) 1 5 ) 1 24 =2 \cdot 2^{\frac{1}{2}} \cdot 2^{\frac{1}{6}}(2(2...)^{\frac{1} {5}})^{\frac{1}{24}}

= 2 2 1 2 2 1 6 2 1 24 ( 2... ) 1 120 =2 \cdot 2^{\frac{1}{2}} \cdot 2^{\frac{1}{6}} \cdot 2^{\frac{1}{24}}(2...)^{\frac{1} {120}}

= 2 2 1 2 2 1 6 2 1 24 2 1 120 . . . =2\cdot 2^{\frac{1}{2}}\cdot 2^{\frac{1}{6}}\cdot 2^{\frac{1}{24}}\cdot 2^{\frac{1}{120}}...

= 2 1 + 1 2 ! + 1 3 ! + 1 4 ! + 1 5 ! + . . . =2^{1+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+\frac{1}{5!}+...}

We know that ,

e = 1 + 1 1 ! + 1 2 ! + 1 3 ! + 1 4 ! + 1 5 ! + . . . e=1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+\frac{1}{5!}+...

Therefore ,

= 2 1 + 1 2 ! + 1 3 ! + 1 4 ! + 1 5 ! + . . . = 2 e 1 =2^{1+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+\frac{1}{5!}+...}=2^{e-1}

Got it ?

Akshat Sharda - 5 years, 8 months ago

Log in to reply

i see it's all about the exponential development, that's what i'm askin for. thanks

who ting - 5 years, 8 months ago

Did it the same way...

Manish Mayank - 5 years, 8 months ago
Antonio Fanari
Sep 24, 2015

P = 2 2 2 2 2 5 4 3 = 2 ( 2 1 2 ! ( 2 1 3 ! ( 2 1 4 ! ( 2 1 5 ! ) ) ) ) P=2\sqrt{2\sqrt[3]{2\sqrt[4]{2\sqrt[5]{2\ldots}}}}=2(2^{\frac 1 {2!}}(2^{\frac 1 {3!}}(2^{\frac 1 {4!}}(2^{\frac 1 {5!}}\ldots))))

P = 2 k = 0 ( 1 k ! ) 1 = 2 e 1 = 2 e 2 = A e B P=2^{{{\sum}_{k=0}^\infty}(\frac 1 {k!})-1}=2^{e-1}=\frac {2^e} 2 =\frac {A^e} B

A + B = 2 + 2 = 4 A+B=2+2=\boxed 4

Jesse Nieminen
Sep 21, 2015

P = 2 1 1 ! 2 1 2 ! . . . = 2 1 1 ! + 1 2 ! + . . . = 2 e 1 = 2 e 2 P = 2^{\frac{1}{1!}} 2^{\frac{1}{2!}} ... = 2^{ \frac{1}{1!} + \frac{1}{2!} + ... } = 2^{e-1}= \frac{2^e}{2}

A = 2 , B = 2 A + B = 4 A = 2, B = 2 \Rightarrow A + B =\boxed{4}

Moderator note:

Good way to present the exponent calculations.

T Sidharth
Mar 31, 2017

Chris Philips
Apr 9, 2017

Not a rigorous proof, but from the given value of P ( some power 2 ), you can guess from the equality that A^e is also some power of 2, and B is just 2. If there were any other numbers added to the equality, guessing would not work out so well

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...