Twisted Trig!

Geometry Level 3

Find the value of 8 cos 2 1 0 1 sin 1 0 . 8\cos^210^\circ - \dfrac{1}{\sin 10^\circ}.


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Danish Ahmed
Sep 4, 2015

8 cos 2 1 0 1 sin 1 0 8\cos^{2}10^{\circ}-\dfrac{1}{\sin 10^{\circ}}

= 4 ( cos 2 0 + 1 ) 1 sin 1 0 =4(\cos 20^{\circ}+1)-\dfrac{1}{\sin 10^{\circ}}

= 4 sin 1 0 cos 2 0 + 4 sin 1 0 1 sin 1 0 =\dfrac{4\sin 10^{\circ}\cos 20^{\circ}+4\sin 10^{\circ}-1}{\sin 10^{\circ}}

= 2 ( sin 3 0 sin 1 0 ) + 4 sin 1 0 1 sin 1 0 =\dfrac{2(\sin 30^{\circ}-\sin 10^{\circ})+4\sin 10^{\circ}-1}{\sin 10^{\circ}}

= 2 sin 1 0 + 4 sin 1 0 sin 1 0 = 2 =\dfrac{-2\sin 10^{\circ}+4\sin 10^{\circ}}{\sin 10^{\circ}} =2

Tanishq Varshney
Sep 4, 2015

Firstly the trigonometric identities

2 cos 2 x = 1 + cos 2 x 2\cos^2 x=1+\cos 2x

1 + 2 cos 2 x = sin 3 x sin x 1+2\cos 2x=\frac{\sin 3x}{\sin x}

now

4 ( 1 + cos 2 0 ) 1 sin 1 0 4(1+\cos 20^{\circ})-\frac{1}{\sin 10^{\circ}}

= 4 + 2 ( 2 cos 2 0 ) 1 sin 1 0 = 4+2(2\cos 20^{\circ})-\frac{1}{\sin 10^{\circ}}

= 4 + 2 ( sin 3 0 sin 1 0 1 ) 1 sin 1 0 =4+2(\frac{\sin 30^{\circ}}{\sin 10^{\circ}}-1)-\frac{1}{\sin 10^{\circ}}

= 4 2 + 1 sin 1 0 1 sin 1 0 =4-2+\frac{1}{\sin 10^{\circ}}-\frac{1}{\sin 10^{\circ}}

= 2 =\large{\boxed{2}}

汶良 林
Sep 7, 2015

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...