Two Chords and an Angle

Geometry Level 5

In a circle, chord A B AB and chord C D CD intersect at E E such that A E = 4 AE = 4 , E B = 196 EB = 196 , D E = 14 DE = 14 , and C E B = cos 1 ( 8 17 ) \angle CEB = \cos^{-1}(-\frac{8}{17}) .

Find the radius of the circle.


The answer is 125.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Aareyan Manzoor
Mar 29, 2018

the first thing to do is to find DB. then using a combination of law of sine and cosine find sin θ \sin\theta , and end it by using 2 r sin θ = D B 2 r \sin\theta = DB .notice inscribed angle theorem was used. first D B 2 = 1 4 2 + 19 6 2 2 8 17 14 196 D B = 350 5 17 DB^2 = 14^2+196^2-2\dfrac{8}{17} *14*196 \to DB= 350 \sqrt{\dfrac{5}{17}} then B C 2 = 5 6 2 + 19 6 2 + 2 8 17 56 196 B C = 420 5 17 BC^2=56^2+196^2+2\dfrac{8}{17} *56*196 \to BC = 420 \sqrt{\dfrac{5}{17}} and by laws of sine 196 sin θ = 420 5 17 sin ( arccos ( 8 / 17 ) ) 1 sin θ = 17 7 5 17 \dfrac{196}{\sin\theta} = \dfrac{420 \sqrt{\dfrac{5}{17}}}{\sin(\arccos(-8/17))} \to \dfrac{1}{\sin\theta} = \dfrac{17}{7} \sqrt{\dfrac{5}{17}} this gives r = D B 2 sin θ = 1 2 × 350 5 17 × 17 7 5 17 = 125 r = \dfrac{DB}{2\sin\theta}=\dfrac{1}{2} \times 350 \sqrt{\dfrac{5}{17}}\times \dfrac{17}{7} \sqrt{\dfrac{5}{17}} = \boxed{125}

Fantastic solution!

David Vreken - 3 years, 2 months ago
David Vreken
Mar 28, 2018

Let F G FG be the perpendicular bisector of C D CD at G G , let H I HI be the perpendicular bisector of A B AB at I I , and let O O be the intersection of F G FG and H I HI , and therefore the center of the circle.

By the intersecting chords theorem , A E E B = C E E D AE \cdot EB = CE \cdot ED , so 4 196 = C E 14 4 \cdot 196 = CE \cdot 14 , which means C E = 56 CE = 56 . Since I I is a bisector of A B AB , I B = 100 IB = 100 and E I = 96 EI = 96 . Since G G is a bisector of C D CD , C G = 35 CG = 35 and G E = 21 GE = 21 .

Let E E be the origin and E B EB be the positive x x -axis. Since C E B = cos 1 ( 8 17 ) \angle CEB = \cos^{-1}(-\frac{8}{17}) , and A E G \angle AEG is supplementary to it, A E G = cos 1 ( 8 17 ) \angle AEG = \cos^{-1}(\frac{8}{17}) . Since E G = 21 EG = 21 , it has an x x -component of 21 cos ( cos 1 ( 8 17 ) ) = 168 17 21\cos(\cos^{-1}(\frac{8}{17})) = \frac{168}{17} , and a y y -component of 2 1 2 ( 168 17 ) 2 = 315 17 \sqrt{21^2 - (\frac{168}{17})^2} = \frac{315}{17} , and so G G has coordinates ( 168 17 , 315 17 ) (-\frac{168}{17}, -\frac{315}{17}) .

Chord C D CD has a slope of tan ( cos 1 ( 8 17 ) ) = 1 7 2 8 2 8 = 15 8 \tan(\cos^{-1}(\frac{8}{17})) = \frac{\sqrt{17^2-8^2}}{8} = \frac{15}{8} , and since F G FG is perpendicular to C D CD , F G FG has a slope of 8 15 -\frac{8}{15} , and therefore an equation of y + 315 17 = 8 15 ( x + 168 17 ) y + \frac{315}{17} = -\frac{8}{15}(x + \frac{168}{17}) .

Since H I HI is perpendicular to the x x -axis, and E I = 96 EI = 96 , H I HI is a vertical line with an equation of x = 96 x = 96 .

Therefore, since O O is the intersection of F G FG and H I HI , its coordinates are the solution to y + 315 17 = 8 15 ( x + 168 17 ) y + \frac{315}{17} = -\frac{8}{15}(x + \frac{168}{17}) and x = 96 x = 96 , which is ( 96 , 75 ) (96, -75) , which means I O = 75 IO = 75 .

Finally, by Pythagorean's Theorem on O H B \triangle OHB , the radius O B = I O 2 + I B 2 = 7 5 2 + 10 0 2 = 125 OB = \sqrt{IO^2 + IB^2} = \sqrt{75^2 + 100^2} = \boxed{125} .

Let O O be the center of the circle, M M , N N the midpoints of A B AB and C D CD respectively. Then O M A B OM\bot AB and O N C D ON\bot CD , so O N E + O M E = π \angle ONE+\angle OME =\pi . Hence O M E N OMEN is a cyclic quadrilateral. Consequently, M E N + M O N = π cos ( M O N ) = cos ( M E N ) cos ( M O N ) = 8 17 \angle MEN+\angle MON=\pi \Rightarrow \cos \left(MON \right)=-\cos \left( MEN \right)\Rightarrow \cos \left( MON \right)=\dfrac{8}{17}

By the intersecting chords theorem , same way as @David Vreken did, we have A E E B = C E E D AE \cdot EB = CE \cdot ED , so 4 196 = C E 14 4 \cdot 196 = CE \cdot 14 , thus, C E = 56 CE = 56 .
Since M M and N N are midpoints, we get E M = 96 EM=96 , M B = 100 MB=100 , C N = 35 CN=35 , N E = 21 NE=21 .

Let M O E = ω 1 \angle MOE={{\omega }_{1}} , N O E = ω 2 \angle NOE={{\omega }_{2}} , O B = R OB=R and O E = d OE=d . Then, sin ω 1 = 96 d \sin {{\omega }_{1}}=\dfrac{96}{d} , sin ω 2 = 21 d \sin {{\omega }_{2}}=\dfrac{21}{d} , cos ω 1 = 1 ( 96 d ) 2 \cos {{\omega }_{1}}=\sqrt{1-{{\left( \dfrac{96}{d} \right)}^{2}}} and cos ω 2 = 1 ( 21 d ) 2 \cos {{\omega }_{2}}=\sqrt{1-{{\left( \dfrac{21}{d} \right)}^{2}}} .

Now, we have an equation for d d :

cos ( M O N ) = cos ( ω 1 + ω 2 ) 8 17 = cos ω 1 cos ω 2 sin ω 1 sin ω 2 8 17 = 1 ( 96 d ) 2 1 ( 21 d ) 2 96 d 21 d d 2 = 14841 \begin{aligned} \cos \left( \angle MON \right)=\cos \left( {{\omega }_{1}}+{{\omega }_{2}} \right) & \Leftrightarrow \dfrac{8}{17}=\cos {{\omega }_{1}}\cdot \cos {{\omega }_{2}}-\sin {{\omega }_{1}}\cdot \sin {{\omega }_{2}} \\ & \Leftrightarrow \dfrac{8}{17}=\sqrt{1-{{\left( \dfrac{96}{d} \right)}^{2}}}\cdot \sqrt{1-{{\left( \dfrac{21}{d} \right)}^{2}}}-\dfrac{96}{d}\cdot \dfrac{21}{d} \\ & \Leftrightarrow \cdots \\ & \Leftrightarrow {{d}^{2}}=14841 \\ \end{aligned}

Finally comes Pythagorean Theorem:

O B 2 = M B 2 + O M 2 R 2 = 100 2 + ( d 2 E M 2 ) R 2 = 100 2 + ( 14841 96 2 ) R = 125 \begin{aligned} O{{B}^{2}}=M{{B}^{2}}+O{{M}^{2}} & \Rightarrow {{R}^{2}}={{100}^{2}}+\left( {{d}^{2}}-{{EM}^{2}} \right) \\ & \Rightarrow {{R}^{2}}={{100}^{2}}+\left( 14841-{{96}^{2}} \right) \\ & \Rightarrow R=\boxed{125} \\ \end{aligned}

Great solution!

David Vreken - 10 months ago

Log in to reply

Thank you for posting the problem!

Thanos Petropoulos - 10 months ago

Fantastic solution!

David Vreken - 3 years, 1 month ago

Log in to reply

Thank you.

Niranjan Khanderia - 3 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...