Two circles from a distance

Geometry Level 2

B C BC is tangent to both a circle with center at A A and a circle with center at D D . The area of the circle with center at A A is 225 π 225\pi and the area of the circle with center at D D is 36 π 36\pi .

If B C = 16 BC=16 , find the distance between the centers of the two circles.

697 \sqrt{697} 1 7 π + 697 \dfrac{1}{7}\pi+\sqrt{697} 5 697 7 + 2 679 7 \dfrac{5\sqrt{697}}{7}+\dfrac{2\sqrt{679}}{7} 17425 49 + 27888 49 \sqrt{\dfrac{17425}{49}}+\sqrt{\dfrac{27888}{49}}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Consider the diagram. A B E D C E \triangle ABE \sim \triangle DCE , thus

B E A B = C E C D \dfrac{BE}{AB}=\dfrac{CE}{CD}

B E 15 = 16 B E 6 \dfrac{BE}{15}=\dfrac{16-BE}{6}

6 B E = 240 15 B E 6BE=240-15BE

21 B E = 240 21BE=240

B E = 80 7 BE=\dfrac{80}{7}

It follows that

C E = 16 80 7 = 32 7 CE=16-\dfrac{80}{7}=\dfrac{32}{7}

Hence,

A D = A B 2 + B E 2 + C D 2 + C E 2 AD=\sqrt{AB^2+BE^2}+\sqrt{CD^2+CE^2}

A D = 1 5 2 + ( 80 7 ) 2 + 6 2 + ( 32 7 ) 2 AD=\sqrt{15^2+\left(\dfrac{80}{7}\right)^2}+\sqrt{6^2+\left(\dfrac{32}{7}\right)^2}

A D = 17425 49 + 2788 49 AD=\sqrt{\dfrac{17425}{49}}+\sqrt{\dfrac{2788}{49}}

A D = 5 697 7 + 2 697 7 AD=\dfrac{5\sqrt{697}}{7}+\dfrac{2\sqrt{697}}{7}

A D = 697 \boxed{AD=\sqrt{697}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...