{ 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 1 0 , 1 1 , 1 2 } The expected value of the number of throws, such that each of sums appears at least once, is B A , where A and B are coprime positive integers. Submit your answer as A + B .
The possible sums for two dices are
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Technic of this article give simple answer
∫ 0 ∞ 1 − ( 1 − e 3 6 − 6 x ) ( 1 − e 3 6 − x ) 2 ( 1 − e 3 6 − 2 x ) 2 ( 1 − e 3 6 − 3 x ) 2 ( 1 − e 3 6 − 4 x ) 2 ( 1 − e 3 6 − 5 x ) 2 d x = 1 2 5 7 4 3 2 5 4 0 0 7 6 9 7 6 7 3 1 6 1 5 9
Problem with hyperlink format
mat.uab.cat/matmat/PDFv2014/v2014n02.pdf
MATerials MATemàtics Volum 2014, treball no. 2, 35 pp. ISSN: 1887-1097 Publicació electrònica de divulgació del Departament de Matemàtiques de la Universitat Autònoma de Barcelona www.mat.uab.cat/matmat The Coupon Collector’s Problem Marco Ferrante, Monica Saltalamacchia
Problem Loading...
Note Loading...
Set Loading...
For any subset S of { 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 1 0 , 1 1 , 1 2 } , let E S be the expected number of dice throws needed to complete the set of all possible outcomes, given that outcomes in the set S have already been obtained. We want to know the value of E ∅ . On the other hand, we know that E { 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 1 0 , 1 1 , 1 2 } = 0 and, for any proper subset S of { 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 1 0 , 1 1 , 1 2 } , E S = 1 + j = 2 ∑ 1 2 3 6 6 − ∣ j − 7 ∣ E S ∪ { j } so that ⎝ ⎛ 1 − j ∈ S ∑ 3 6 6 − ∣ j − 7 ∣ ⎠ ⎞ E S = 1 + j ∈ S ∑ 3 6 6 − ∣ j − 7 ∣ E S ∪ { j } and hence E S = 3 6 − ∑ j ∈ S ( 6 − ∣ j − 7 ∣ ) 3 6 + ∑ j ∈ S ( 6 − ∣ j − 7 ∣ ) E S ∪ { j } The rest is a matter of computation. We can show that E ∅ = 1 2 5 7 4 3 2 5 4 0 0 7 6 9 7 6 7 3 1 6 1 5 9 and so the desired answer is 7 6 9 7 6 7 3 1 6 1 5 9 + 1 2 5 7 4 3 2 5 4 0 0 = 7 8 2 3 4 1 6 4 1 5 5 9 .