Two dice sums

The possible sums for two dices are { 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 } \{2,3,4,5,6,7,8,9,10,11,12\} The expected value of the number of throws, such that each of sums appears at least once, is A B \frac{ A}{B } , where A A and B B are coprime positive integers. Submit your answer as A + B A+B .


The answer is 782341641559.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Mark Hennings
Oct 6, 2020

For any subset S S of { 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 } \{2,3,4,5,6,7,8,9,10,11,12\} , let E S E_S be the expected number of dice throws needed to complete the set of all possible outcomes, given that outcomes in the set S S have already been obtained. We want to know the value of E E_\varnothing . On the other hand, we know that E { 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 } = 0 E_{\{2,3,4,5,6,7,8,9,10,11,12\}} = 0 and, for any proper subset S S of { 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 } \{2,3,4,5,6,7,8,9,10,11,12\} , E S = 1 + j = 2 12 6 j 7 36 E S { j } E_S \; = \; 1 + \sum_{j=2}^{12} \frac{6 - |j-7|}{36}E_{S \cup \{j\}} so that ( 1 j S 6 j 7 36 ) E S = 1 + j ∉ S 6 j 7 36 E S { j } \left(1 - \sum_{j \in S} \frac{6 - |j-7|}{36}\right)E_S \; = \; 1 + \sum_{j \not\in S} \frac{6 - |j-7|}{36} E_{S \cup \{j\}} and hence E S = 36 + j ∉ S ( 6 j 7 ) E S { j } 36 j S ( 6 j 7 ) E_{S} \; = \; \frac{36 + \sum_{j \not\in S}(6 - |j-7|)E_{S \cup \{j\}}}{36 - \sum_{j \in S}(6- |j-7|)} The rest is a matter of computation. We can show that E = 769767316159 12574325400 E_\varnothing \; = \; \frac{769767316159}{12574325400} and so the desired answer is 769767316159 + 12574325400 = 782341641559 769767316159 + 12574325400 = \boxed{782341641559} .

Yuriy Kazakov
Oct 9, 2020

Technic of this article give simple answer

0 1 ( 1 e 6 x 36 ) ( 1 e x 36 ) 2 ( 1 e 2 x 36 ) 2 ( 1 e 3 x 36 ) 2 ( 1 e 4 x 36 ) 2 ( 1 e 5 x 36 ) 2 d x = 769767316159 12574325400 \int_0^{\infty} 1-(1-e^{\frac{-6x}{36}})(1-e^{\frac{-x}{36}})^2(1-e^{\frac{-2x}{36}})^2(1-e^{\frac{-3x}{36}})^2(1-e^{\frac{-4x}{36}})^2(1-e^{\frac{-5x}{36}})^2 dx = \frac {769767316159}{12574325400}

Wolframalpha calculation

Problem with hyperlink format

mat.uab.cat/matmat/PDFv2014/v2014n02.pdf

MATerials MATemàtics Volum 2014, treball no. 2, 35 pp. ISSN: 1887-1097 Publicació electrònica de divulgació del Departament de Matemàtiques de la Universitat Autònoma de Barcelona www.mat.uab.cat/matmat The Coupon Collector’s Problem Marco Ferrante, Monica Saltalamacchia

Yuriy Kazakov - 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...