Let x , y and z be non-negative numbers and x + y + z = 1 .
And denote A and B as the maximum values of x 2 y + y 2 z + z 2 x and x 2 y + y 2 z + z 2 x + x y z , respectively.
Find the value of 5 4 ( A + B ) .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
x 2 y + y 2 z + z 2 x ≤ 2 7 4 Without Loss of Generality, assume x ≥ y ≥ z
2 ( x 2 y + y 2 z + z 2 x ) − x ( x + z ) ( 2 y + z ) = 2 y z ( y − x ) + x z ( z − x ) ≤ 0
∴ x 2 y + y 2 z + z 2 x ≤ 2 1 x ( x + z ) ( 2 y + z ) ≤ 2 1 ( 3 x + x + z + 2 y + z ) 3 = 2 7 4
Equality holds iff x = 3 2 , y = 3 1 , z = 0
x 2 y + y 2 z + z 2 x + x y z ≤ 2 7 4 Without Loss of Generality, assume x ≥ z ≥ y
( x − z ) ( y − z ) ≤ 0
x y + z 2 ≤ x z + y z
x 2 y + x z 2 ≤ x 2 z + x y z
x 2 y + y 2 z + z 2 x + x y z ≤ x 2 z + 2 x y z + y 2 z = z ( x + y ) 2 ≤ 2 7 4 ( z + 2 x + y + 2 x + y ) 3 = 2 7 4
Equality holds iff x = y = z = 3 1
Problem Loading...
Note Loading...
Set Loading...
The first part of the problem is the same as one of my problems: x, y and z
From that is not so difficult to get that B = A , and since A = 2 7 4 ,
5 4 ( A + B ) = 1 6