Two Famous Series

Calculus Level 4

i = 1 2017 i n = 1 1 n ( n + 1 ) ( n + 2 ) ( n + 2016 ) = ? \large \prod_{i=1}^{2017} i \sum_{n=1}^{\infty} \dfrac{1}{n(n+1)(n+2)\cdots(n+2016)} = \, ?

1 2016 \dfrac{1}{2016} \infty 201 7 2 2016 2017^2\cdot2016 2017 2016 \dfrac{2017}{2016} 2016 2017 \dfrac{2016}{2017} 2016 2016

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rohit Udaiwal
Apr 17, 2016

Relevant wiki: Telescoping Series - Sum

G e n e r a l i s a t i o n \mathbf{Generalisation} p = 1 1 p ( p + 1 ) ( p + 2 ) ( p + q ) = 1 q p = 1 [ 1 p ( p + 1 ) ( p + 2 ) ( p + q 1 ) 1 ( p + 1 ) ( p + 2 ) ( p + 3 ) ( p + q ) ] = 1 q [ 1 1 2 3 q 1 2 3 4 ( q + 1 ) + 1 2 3 4 ( q + 1 ) ] [ Telescopic Series ] = 1 q [ 1 1 2 3 q ] = 1 q q ! \begin{aligned} \displaystyle & \sum_{p=1}^{\infty} \dfrac{1}{p(p+1)(p+2)\ldots(p+q)} \\ = & \dfrac{1}{q} \sum_{p=1}^{\infty}\left[ \dfrac{1}{p(p+1)(p+2)\ldots(p+q-1)}-\dfrac{1}{(p+1)(p+2)(p+3)\ldots(p+q)}\right] \\ = & \dfrac{1}{q}\left[\dfrac{1}{1\cdot2\cdot3\cdot\ldots\cdot q}-\dfrac{1}{2\cdot3\cdot4\cdot\ldots\cdot(q+1)}+\dfrac{1}{2\cdot3\cdot4\cdot\ldots\cdot(q+1)}-\ldots\right] \quad [\small{\text{Telescopic Series}}] \\ = & \dfrac{1}{q}\left[\dfrac{1}{1\cdot2\cdot3\cdot\ldots\cdot q}\right] \\ = & \displaystyle \boxed{\dfrac{1}{q\cdot q!}} \end{aligned}


Now we have i = 1 2017 i n = 1 1 n ( n + 1 ) ( n + 2 ) ( n + 2016 ) = [ 2017 ! 1 2016 2016 ! ] = 2016 ! 2017 1 2016 2016 ! = 2017 2016 \begin{aligned} \displaystyle & \prod_{i=1}^{2017} i \sum_{n=1}^{\infty} \dfrac{1}{n(n+1)(n+2)\ldots(n+2016)} \\ = & \left[2017!\cdot\dfrac{1}{2016\cdot2016!}\right] = 2016!\cdot2017\cdot\dfrac{1}{2016\cdot 2016!} \\ = & \displaystyle \boxed{\boxed{\dfrac{2017}{2016}}} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...