two functions at a time

Calculus Level 5

Given that f ( x ) = 2 tan 1 x f(x) = 2 \tan^{-1}x and a differentiable function g ( x ) g(x) such that g ( x + 2 y 3 ) = g ( x ) + 2 g ( y ) 3 x , y R g\left(\dfrac{x+2y}{3}\right) = \dfrac{g(x)+ 2g(y)}{3} \forall x,y \in \mathbb R , g ( 0 ) = 2 g(0)=2 and g ( 0 ) = 1 g'(0)=1 .

Find number of integers satisfying the following inequality, where x ( 10 , 10 ) x \in (-10,10) .

f 2 ( g ( x ) ) 5 f ( g ( x ) ) + 4 > 0 \large f^{2}(g(x)) - 5f(g(x)) + 4 >0

8 7 10 9

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tom Engelsman
Oct 11, 2017

Let us first solve the function g ( x ) g(x) by differentiating it with respect to x and y respectively:

1 3 g ( x + 2 y 3 ) = 1 3 g ( x ) \frac{1}{3} \cdot g'(\frac{x+2y}{3}) = \frac{1}{3}g'(x) (i)

2 3 g ( x + 2 y 3 ) = 2 3 g ( y ) \frac{2}{3} \cdot g'(\frac{x+2y}{3}) = \frac{2}{3}g'(y) (ii)

which equating (i) with (ii) gives g ( x ) = g ( y ) = A g ( x ) = A x + B g'(x) = g'(y) = A \Rightarrow g(x) = Ax + B , where A , B R . A,B \in \mathbb{R}. Plugging in the given boundary conditions ultimately results in g ( x ) = x + 2 \boxed{g(x) = x + 2} .

Now, turning the to the quadratic inequality below we find that:

f 2 ( g ( x ) ) 5 f ( g ( x ) ) + 4 > 0 [ f ( g ( x ) ) 1 ] [ f ( g ( x ) ) 4 ] > 0 2 a r c t a n ( x + 2 ) < 1 f^{2}(g(x)) - 5f(g(x)) + 4 > 0 \Rightarrow [f(g(x)) - 1][f(g(x)) - 4] > 0 \Rightarrow 2arctan(x+2) < 1 or 2 a r c t a n ( x + 2 ) > 4 a r c t a n ( x + 2 ) ( , 1 2 ) ( 2 , ) . 2arctan(x+2) > 4 \Rightarrow \boxed{arctan(x+2) \in (-\infty, \frac{1}{2}) \cup (2, \infty)}. . Since π 2 < a r c t a n ( x + 2 ) < π 2 -\frac{\pi}{2} < arctan(x+2) < \frac{\pi}{2} must be satisfied for all x ( 10 , 10 ) x \in (-10,10) , we restrict the range to the interval ( π 2 , 1 2 ) . (-\frac{\pi}{2}, \frac{1}{2}). To find the allowable domain values, we require:

π 2 < a r c t a n ( x + 2 ) < 1 2 t a n ( π 2 ) < x + 2 < t a n ( 1 2 ) < x < t a n ( 1 2 ) 2 x ( , 1.4537 ) -\frac{\pi}{2} < arctan(x+2) < \frac{1}{2} \Rightarrow tan(-\frac{\pi}{2}) < x+2 < tan(\frac{1}{2}) \Rightarrow -\infty < x < tan(\frac{1}{2}) - 2 \Rightarrow x \in (-\infty, -1.4537) . The final domain required of this inequality problem is x ( 10 , 1.4537 ) x \in (-10, -1.4537) , which includes E I G H T \boxed{EIGHT} integral values.

Nice solution.

Hana Wehbi - 3 years, 8 months ago

Log in to reply

Thanks, Hana.....love my functional equations!!

tom engelsman - 3 years, 8 months ago

oh my god i made a trivial mistake. i did the same thing.

Srikanth Tupurani - 2 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...