Two functions too trouble

Geometry Level 4

Let f ( x ) = 2 ( a x ) ( x + x 2 + 9 ) f(x) = 2(a-x)(x+\sqrt{x^{2}+9}) and g ( y ) = 9 + 7 cos 2 x + 24 sin x cos x g(y) = 9+7\cos ^{2} x + 24\sin x \cos x be two functions having same maximum value.That is, f max = g max f_\text{max} = g_\text{max} .

Given that a > 0 a>0 ,find the value of a a .


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Harsh Shrivastava
Jul 12, 2016

Relevant wiki: Maximum value of a quadratic expression

Manipulating g ( y ) g(y) ,

g ( y ) = 9 + 7 cos 2 x + 24 sin x cos x = 9 ( sin 2 x + cos 2 x ) + 7 cos 2 x + 24 sin x cos x = g(y) = 9+7\cos ^{2} x + 24\sin x \cos x= 9(\sin ^{2}x + \cos ^{2} x) + 7\cos ^{2} x + 24\sin x \cos x =

( 3 sin x ) 2 + ( 4 cos x ) 2 + 2 ( 3 sin x ) ( 4 cos x ) = (3\sin x)^{2} + (4\cos x)^{2} + 2(3\sin x)(4 \cos x) = ( 3 s i n x + 4 c o s x ) 2 25 ( ) ( 3sin x + 4cos x)^{2} \leq 25 \cdots \cdots (*)

Now let's find maximum value of f f .

Substitute t = x + x 2 + 9 x = t 2 9 2 t t = x + \sqrt{x^{2} + 9} \implies x = \dfrac{t^{2}-9}{2t}

f ( t ) = t 2 + 2 a t + 9 f(t) = -t^{2}+2at+9

f m a x = f ( a ) = a 2 + 9 \implies f_{max} = f(a) = a^{2}+9

Maximum value of f ( t ) = 25 f(t) = 25 (by * )

Therefore a 2 + 9 = 25 a^{2}+9=25

a = 4 \large \displaystyle \implies \boxed{a=4}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...