Two many twos

Algebra Level 3

z = ( 1 2 2 + 2 + 2 + i 2 2 2 + 2 ) 4 z = \left( \dfrac{1}{2} \sqrt{2+ \sqrt{2 + \sqrt{2}}} + \dfrac{i}{2} \sqrt{2 - \sqrt{2 + \sqrt{2}}} \right)^4

Calculate the exact value of 100 z 100 |z| , rounded to the nearest hundredths place.


The answer is 100.00.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Mark Hennings
Dec 30, 2018

If we write x = 1 2 2 + 2 + 2 y = 1 2 2 2 + 2 x \; = \; \tfrac12\sqrt{2+\sqrt{2+\sqrt{2}}} \hspace{2cm} y \; = \; \tfrac12\sqrt{2- \sqrt{2+\sqrt{2}}} then x 2 + y 2 = 1 4 [ 2 + 2 + 2 + 2 2 + 2 ] = 1 x^2 + y^2 \; = \; \tfrac14\left[2 + \sqrt{2+\sqrt{2}} + 2 - \sqrt{2+\sqrt{2}}\right] \; = \; 1 so that z = ( x + i y ) 4 z \; = \; (x + iy)^4 clearly has modulus 1 1 , making the answer 100 \boxed{100} .

Hobart Pao
Dec 29, 2018

By the double angle formulas, used to derive the half angle formulas, the following can be obtained: 1 2 2 + 2 + 2 = cos π 16 \dfrac{1}{2} \sqrt{2+ \sqrt{2 + \sqrt{2}}} = \cos \dfrac{\pi}{16} and i 2 2 2 + 2 = sin π 16 \dfrac{i}{2} \sqrt{2- \sqrt{2 + \sqrt{2}}} = \sin \dfrac{\pi}{16} By DeMoivre's formula, we obtain

( cos π 16 + i sin π 16 ) 4 = cos π 4 + i sin π 4 ( \cos \dfrac{\pi}{16} + i \sin \dfrac{\pi}{16})^4 = \cos \dfrac{\pi}{4} + i \sin \dfrac{\pi}{4}

whereof the norm is easily seen to be 1 1 , so the final answer is 100.00 \boxed{100.00} .

DeMoivre's formula may look almost too good to be true, but if you write complex numbers in their polar form and use e i θ = cos θ + i sin θ e^{i \theta} = \cos \theta + i \sin \theta , the additivity of exponents shows that if a , b C a, b \in \mathbb{C} , then arg a b = arg a + arg b \arg ab = \arg a + \arg b . In other words, multiplication of complex numbers a a and b b rotates 1 1 by arg a + arg b \arg a + \arg b and scales 1 1 by a b |ab| .

Chew-Seong Cheong
Dec 30, 2018

z = ( 1 2 2 + 2 + 2 + i 2 2 2 + 2 ) 4 = 1 2 4 ( 2 + 2 + 2 + i 2 2 + 2 ) 4 = 1 2 4 ( 2 + 2 + 2 + i 2 2 + 2 e arg ( 2 + 2 + 2 + i 2 2 + 2 ) ) 4 = 1 2 4 ( 2 + 2 + 2 + 2 2 + 2 e arg ( 2 + 2 + 2 + i 2 2 + 2 ) ) 4 = 1 2 4 ( 4 e arg ( 2 + 2 + 2 + i 2 2 + 2 ) ) 4 = 2 4 2 4 e 4 arg ( 2 + 2 + 2 + i 2 2 + 2 ) = e 4 arg ( 2 + 2 + 2 + i 2 2 + 2 ) \begin{aligned} z & = \left(\frac 12\sqrt{2+\sqrt{2+\sqrt 2}} + \frac i2 \sqrt{2-\sqrt{2+\sqrt 2}} \right)^4 \\ & = \frac 1{2^4} \left(\sqrt{2+\sqrt{2+\sqrt 2}} + i\sqrt{2-\sqrt{2+\sqrt 2}} \right)^4 \\ & = \frac 1{2^4} \left(\left|\sqrt{2+\sqrt{2+\sqrt 2}} + i\sqrt{2-\sqrt{2+\sqrt 2}}\right|e^{\arg \left(\sqrt{2+\sqrt{2+\sqrt 2}} + i\sqrt{2-\sqrt{2+\sqrt 2}}\right)} \right)^4 \\ & = \frac 1{2^4} \left(\sqrt{2+\sqrt{2+\sqrt 2} + 2-\sqrt{2+\sqrt 2}}e^{\arg \left(\sqrt{2+\sqrt{2+\sqrt 2}} + i\sqrt{2-\sqrt{2+\sqrt 2}}\right)} \right)^4 \\ & = \frac 1{2^4} \left(\sqrt 4 e^{\arg \left(\sqrt{2+\sqrt{2+\sqrt 2}} + i\sqrt{2-\sqrt{2+\sqrt 2}}\right)} \right)^4 \\ & = \frac {2^4}{2^4} e^{4\arg \left(\sqrt{2+\sqrt{2+\sqrt 2}} + i\sqrt{2-\sqrt{2+\sqrt 2}}\right)} \\ & = e^{4\arg \left(\sqrt{2+\sqrt{2+\sqrt 2}} + i\sqrt{2-\sqrt{2+\sqrt 2}}\right)} \end{aligned}

Therefore z = 1 |z| = 1 and 100 z = 100.00 100|z| = \boxed{100.00}

If we believe this problem has a nice solution, we may hope to be able to write

cos θ = 1 2 2 + 2 + 2 , \cos\theta = \frac{1}{2} \sqrt{ 2 + \sqrt{ 2 + \sqrt{2}} },

for some θ [ 0 , 2 π ) . \theta \in \left[ 0, 2 \pi \right). If that is the case, observe that using the identity we can find the value of the corresponding sine. That'll yield

sin θ = 1 2 2 2 + 2 , \sin\theta = \frac{1}{2} \sqrt{ 2 - \sqrt{ 2 + \sqrt{2}} },

which is exactly the imaginary part of a number z 1 / 4 . z^{1/4}. In this case, we can write our number as

z = ( cos θ + i sin θ ) 4 = e 4 i θ , z = \left( \cos\theta + i \sin\theta \right)^4 = e^{4i \theta},

which has modulus 1. 1.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...