Two moving points from the origin

Calculus Level 2

Two points P P and Q Q start at the origin and move from the origin at the same time along the x x -axis. At time t > 0 t>0 , P P and Q Q have velocities of sin ( π t ) \sin (\pi t) and 2 sin ( 2 π t ) 2\sin (2\pi t) , respectively. If P P and Q Q first meet again after m n \frac{m}{n} seconds, where m m and n n are positive co-prime integers, what is the value of m + n m+n ?


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tunk-Fey Ariawan
Jan 31, 2014

P P and Q Q will meet again if y P = y Q y_P=y_Q and t P = t Q t_P=t_Q . We have v P = d y P d t = sin π t v_P = \frac{dy_P}{dt} = \sin \pi t and v Q = d y Q d t = 2 sin 2 π t v_Q = \frac{dy_Q}{dt} = 2\sin 2\pi t , then y P = 0 a b sin π t d t = cos π t π 0 a b = 1 cos a b π π \begin{aligned} y_P &=\int_0^{\frac{a}{b}} \sin \pi t\, dt\\ &=-\left.\frac{\cos \pi t}{\pi}\right|_0^{\frac{a}{b}}\\ &= \frac{1- \cos \frac{a}{b} \pi}{\pi} \end{aligned} and y Q = 2 0 a b sin 2 π t d t = cos 2 π t π 0 a b = 1 cos 2 a b π π . \begin{aligned} y_Q &=2\int_0^{\frac{a}{b}} \sin 2\pi t\, dt\\ &=-\left.\frac{\cos 2\pi t}{\pi}\right|_0^{\frac{a}{b}}\\ &= \frac{1- \cos \frac{2a}{b} \pi}{\pi}. \end{aligned} Therefore y P = y Q 1 cos a b π π = 1 cos 2 a b π π cos 2 a b π cos a b π = 0 2 cos 2 a b π cos a b π 1 = 0 ( cos a b π 1 ) ( 2 cos a b π + 1 ) = 0. \begin{aligned} y_P &=y_Q\\ \frac{1- \cos \frac{a}{b} \pi}{\pi}&= \frac{1- \cos \frac{2a}{b} \pi}{\pi}\\ \cos \frac{2a}{b} \pi-\cos \frac{a}{b} \pi&=0\\ 2\cos^2 \frac{a}{b} \pi-\cos \frac{a}{b} \pi - 1&=0\\ \left(\cos \frac{a}{b} \pi - 1\right)\left(2\cos \frac{a}{b} \pi + 1\right)&=0. \end{aligned} We obtain cos a b π 1 = 0 cos a b π = 1 a b π = 2 π n 1 for n 1 Z , a b = 2 n 1 2 cos a b π + 1 = 0 cos a b π = 1 2 a b π = 2 3 π + 2 π n 2 or a b π = 4 3 π + 2 π n 3 for n 2 and n 3 Z , a b = 2 3 + 2 n 2 or a b = 4 3 + 2 n 3 . \begin{aligned} \cos \frac{a}{b} \pi - 1&=0\\ \cos \frac{a}{b} \pi&=1\\ \frac{a}{b}\pi&=2\pi n_1 & \text{ for } n_1 \in \mathbb{Z,}\\ \frac{a}{b}&=2 n_1\\ \\ 2\cos \frac{a}{b} \pi + 1&=0\\ \cos \frac{a}{b} \pi &=-\frac{1}{2}\\ \frac{a}{b} \pi &=\frac{2}{3} \pi +2\pi n_2 \,\color{#3D99F6}{\text{or}}\, \frac{a}{b} \pi =\frac{4}{3} \pi +2\pi n_3 & \text{ for } n_2 \text{ and } n_3\in \mathbb{Z,}\\ \frac{a}{b}&=\frac{2}{3} +2 n_2 \,\color{#3D99F6}{\text{or}}\, \frac{a}{b}=\frac{4}{3} +2 n_3. \end{aligned} P P and Q Q will meet for the first time if n 2 = 0 n_2=0 . Thus, a b = 2 3 \frac{a}{b}=\frac{2}{3} and a + b = 5 a+b=\boxed{5} .

# Q . E . D . # \text{\# }\mathbb{Q}.\mathbb{E}.\mathbb{D}.\text{\#}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...