Two pegs on a square

Geometry Level 4

A unit square A B C D ABCD has two points M , N M,N inside it (possible on the perimeter) such that M A + M B + M C + N A + N D + N C \overline{MA} + \overline{MB} + \overline{MC} + \overline{NA} + \overline{ND} + \overline{NC} is a minimum.

If M N = a b \overline{MN} = \frac {\sqrt a }{b} , then what is the value of a + b a+b ?


The answer is 9.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Deepanshu Gupta
Sep 15, 2014

F i r s t o f a l l i w a n t t o k n o w w h a t i s p e g s . . ? ? ( B U T I s o l v e d t h i s q u e s t i o n b y a s s u m i n g p e g s t o b e P o i n t . ) S O L : f o r t o m i n i m i z e M A + M B + M C " M " m u s t b e p r e s e n t i n s i d e t h e t r i a n g l e A B C a n d m a k e s e q u a l a n g l e s w h i c h i s 120 d e g r e e . ( T H I N K S L O G I C A L L Y ) n o w d r o p p e r p e n d i c u l a r f r o m M t o s i d e A C = 2 a n d l e t F o o t o f p e r p e n d i c u l a r i s L N o w B y s y m m e t r y M N = 2 × M L S i n c e M A L = 30 d e g r e e tan ( 30 ) = 1 3 = M L A L A L = A C 2 = 2 2 = 1 2 M L = 1 6 M N = 6 3 a = 6 & b = 3 a + b = 9 First\quad of\quad all\quad i\quad want\quad to\quad know\quad what\quad is\quad pegs..??\\ (BUT\quad I\quad solved\quad this\quad question\quad by\quad assuming\quad pegs\quad to\quad be\quad Point.)\\ SOL:\quad for\quad to\quad minimize\quad MA+MB+MC\quad \\ "M"\quad must\quad be\quad present\quad inside\quad the\quad triangle\quad ABC\\ and\quad makes\quad equal\quad angles\quad which\quad is\quad 120\quad degree.(THINKS\quad LOGICALLY)\\ now\quad drop\quad perpendicular\quad from\quad 'M'\quad to\quad side\quad AC=\sqrt { 2 } \\ and\quad let\quad Foot\quad of\quad perpendicular\quad is\quad 'L'\quad \\ Now\quad By\quad symmetry\quad \\ \Longrightarrow MN=2\times ML\\ Since\quad \angle MAL=30\quad degree\\ \Longrightarrow \tan { (30) } =\frac { 1 }{ \sqrt { 3 } } =\frac { ML }{ AL } \\ \Longrightarrow AL=\frac { AC }{ 2 } =\frac { \sqrt { 2 } }{ 2 } =\frac { 1 }{ \sqrt { 2 } } \\ \Longrightarrow ML=\frac { 1 }{ \sqrt { 6 } } \\ \Longrightarrow MN=\frac { \sqrt { 6 } }{ 3 } \\ \Longrightarrow a=6\quad \& \quad b=3\\ \Longrightarrow a+b=9 .

Peg is used here to mean a dot mark, as used in the game of cribbage. Any other idea that comes to mind is incidental.

Rajen Kapur - 6 years, 8 months ago
Ujjwal Rane
Oct 31, 2014

Imgur Imgur

Think of distances MA, MB, MC whose sum is to be minimized as soap films (or rubber bands) meeting in M. Three soap film meet at 120° (Lami's theorem for 3 equal forces/tensions!)

Same happens at peg N

Note triangle MNA is equilateral! => AM = MN

Using Sine Rule in triangle AMB - 1 sin 120 = A M sin 45 \frac {1}{\sin 120} = \frac {AM}{\sin 45} A M = 6 3 AM = \frac{\sqrt 6}{3}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...