Two piece wise functions

Algebra Level 4

If a step function, S ( x ) = { 0 for x 0 1 for x > 0 S(x)= \begin{cases} 0 &\text{for} & x \leq 0 \\ 1 &\text{for} & x > 0 \end{cases}
Then a piece wise function f ( x ) = { x 2 for 1 < x 2 4 x for x > 2 f(x)=\begin{cases} x^2 & \text{for} & 1<x \leq 2 \\ 4x & \text{for} & x > 2 \end{cases} can be written in terms of S as f ( x ) = x 2 + ( a x x 2 ) S ( x + b ) f(x)=x^2+(ax-x^2)S(x+b)
Then, find the value of a+b


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

展豪 張
Apr 10, 2016

We can 'construct' f ( x ) f(x) step by step:
S ( x ) = { 0 for x 0 1 for x > 0 S(x)=\begin{cases}0&\text{for}&x\leq 0\\1&\text{for}&x\gt 0\end{cases}
S ( x 2 ) = { 0 for x 2 1 for x > 2 S(x-2)=\begin{cases}0&\text{for}&x\leq 2\\1&\text{for}&x\gt 2\end{cases}
x 2 + S ( x 2 ) = { x 2 for x 2 x 2 + 1 for x > 2 x^2+S(x-2)=\begin{cases}x^2&\text{for}&x\leq 2\\x^2+1&\text{for}&x\gt 2\end{cases}
x 2 + ( 4 x x 2 ) S ( x 2 ) = { x 2 for x 2 4 x for x > 2 x^2+(4x-x^2)S(x-2)=\begin{cases}x^2&\text{for}&x\leq 2\\4x&\text{for}&x\gt 2\end{cases}
Just 'chop' the x 1 x\leq 1 cases out and we are done:
x 2 + ( 4 x x 2 ) S ( x 2 ) = { x 2 for 1 < x 2 4 x for x > 2 x^2+(4x-x^2)S(x-2)=\begin{cases}x^2&\text{for}&1\lt x\leq 2\\4x&\text{for}&x\gt 2\end{cases}
a = 4 , b = 2 \therefore a=4,b=-2
a + b = 2 a+b=2


0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...